In mathematics, a projective range is a set of points in projective geometry considered in a unified fashion. A projective range may be a projective line or a conic. A projective range is the dual of a pencil of lines on a given point. For instance, a correlation interchanges the points of a projective range with the lines of a pencil. A projectivity is said to act from one range to another, though the two ranges may coincide as sets.
A projective range expresses projective invariance of the relation of projective harmonic conjugates. Indeed, three points on a projective line determine a fourth by this relation. Application of a projectivity to this quadruple results in four points likewise in the harmonic relation. Such a quadruple of points is termed a harmonic range. In 1940 Julian Coolidge described this structure and identified its originator:
Two fundamental one-dimensional forms such as point ranges, pencils of lines, or of planes are defined as projective, when their members are in one-to-one correspondence, and a harmonic set of one ... corresponds to a harmonic set of the other. ... If two one-dimensional forms are connected by a train of projections and intersections, harmonic elements will correspond to harmonic elements, and they are projective in the sense of Von Staudt.
When a conic is chosen for a projective range, and a particular point E on the conic is selected as origin, then addition of points may be defined as follows:
Let A and B be in the range (conic) and AB the line connecting them. Let L be the line through E and parallel to AB. The "sum of points A and B", A + B, is the intersection of L with the range.
The circle and hyperbola are instances of a conic and the summation of angles on either can be generated by the method of "sum of points", provided points are associated with angles on the circle and hyperbolic angles on the hyperbola.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores KKT conditions in convex optimization, covering dual problems, logarithmic constraints, least squares, matrix functions, and suboptimality of covering ellipsoids.
In geometry and in its applications to drawing, a perspectivity is the formation of an image in a picture plane of a scene viewed from a fixed point. The science of graphical perspective uses perspectivities to make realistic images in proper proportion. According to Kirsti Andersen, the first author to describe perspectivity was Leon Alberti in his De Pictura (1435). In English, Brook Taylor presented his Linear Perspective in 1715, where he explained "Perspective is the Art of drawing on a Plane the Appearances of any Figures, by the Rules of Geometry".
In projective geometry, the harmonic conjugate point of a point on the real projective line with respect to two other points is defined by the following construction: Given three collinear points A, B, C, let L be a point not lying on their join and let any line through C meet LA, LB at M, N respectively. If AN and BM meet at K, and LK meets AB at D, then D is called the harmonic conjugate of C with respect to A and B. The point D does not depend on what point L is taken initially, nor upon what line through C is used to find M and N.
In mathematics, specifically in incidence geometry and especially in projective geometry, a complete quadrangle is a system of geometric objects consisting of any four points in a plane, no three of which are on a common line, and of the six lines connecting the six pairs of points. Dually, a complete quadrilateral is a system of four lines, no three of which pass through the same point, and the six points of intersection of these lines.