A modeling language is any artificial language that can be used to express data, information or knowledge or systems in a structure that is defined by a consistent set of rules. The rules are used for interpretation of the meaning of components in the structure Programing language. A modeling language can be graphical or textual. Graphical modeling languages use a diagram technique with named symbols that represent concepts and lines that connect the symbols and represent relationships and various other graphical notation to represent constraints. Textual modeling languages may use standardized keywords accompanied by parameters or natural language terms and phrases to make computer-interpretable expressions. An example of a graphical modeling language and a corresponding textual modeling language is EXPRESS. Not all modeling languages are executable, and for those that are, the use of them doesn't necessarily mean that programmers are no longer required. On the contrary, executable modeling languages are intended to amplify the productivity of skilled programmers, so that they can address more challenging problems, such as parallel computing and distributed systems. A large number of modeling languages appear in the literature. Example of graphical modeling languages in the field of computer science, project management and systems engineering: Behavior Trees are a formal, graphical modeling language used primarily in systems and software engineering. Commonly used to unambiguously represent the hundreds or even thousands of natural language requirements that are typically used to express the stakeholder needs for a large-scale software-integrated system. Business Process Modeling Notation (BPMN, and the XML form BPML) is an example of a Process Modeling language. C-K theory consists of a modeling language for design processes. DRAKON is a general-purpose algorithmic modeling language for specifying software-intensive systems, a schematic representation of an algorithm or a stepwise process, and a family of programming languages.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (27)
EE-608: Deep Learning For Natural Language Processing
The Deep Learning for NLP course provides an overview of neural network based methods applied to text. The focus is on models particularly suited to the properties of human language, such as categori
CS-431: Introduction to natural language processing
The objective of this course is to present the main models, formalisms and algorithms necessary for the development of applications in the field of natural language information processing. The concept
BIO-643: Integrative structural biology for Life sciences
Hands-on course in Biomolecular Integrative Structural Biology by SV experts in the field of X-ray crystallography, cryo-Electron Microscopy, Bio-NMR and protein modeling tools. No previous knowledge
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.