In mathematical logic, the diagonal lemma (also known as diagonalization lemma, self-reference lemma or fixed point theorem) establishes the existence of self-referential sentences in certain formal theories of the natural numbers—specifically those theories that are strong enough to represent all computable functions. The sentences whose existence is secured by the diagonal lemma can then, in turn, be used to prove fundamental limitative results such as Gödel's incompleteness theorems and Tarski's undefinability theorem.
Let be the set of natural numbers. A first-order theory in the language of arithmetic represents the computable function if there exists a "graph" formula in the language of such that for each
Here is the numeral corresponding to the natural number , which is defined to be the th successor of presumed first numeral in .
The diagonal lemma also requires a systematic way of assigning to every formula a natural number (also written as ) called its Gödel number. Formulas can then be represented within by the numerals corresponding to their Gödel numbers. For example, is represented by
The diagonal lemma applies to theories capable of representing all primitive recursive functions. Such theories include first-order Peano arithmetic and the weaker Robinson arithmetic, and even to a much weaker theory known as R. A common statement of the lemma (as given below) makes the stronger assumption that the theory can represent all computable functions, but all the theories mentioned have that capacity, as well.
Let be a first-order theory in the language of arithmetic and capable of representing all computable functions, and be a formula in with one free variable. Then there exists a sentence such that
Intuitively, is a self-referential sentence: says that has the property . The sentence can also be viewed as a fixed point of the operation assigning to each formula the sentence . The sentence constructed in the proof is not literally the same as , but is provably equivalent to it in the theory .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
"Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I" ("On Formally Undecidable Propositions of Principia Mathematica and Related Systems I") is a paper in mathematical logic by Kurt Gödel. Submitted November 17, 1930, it was originally published in German in the 1931 volume of Monatshefte für Mathematik. Several English translations have appeared in print, and the paper has been included in two collections of classic mathematical logic papers.
Self-reference is a concept that involves referring to oneself or one's own attributes, characteristics, or actions. It can occur in language, logic, mathematics, philosophy, and other fields. In natural or formal languages, self-reference occurs when a sentence, idea or formula refers to itself. The reference may be expressed either directly—through some intermediate sentence or formula—or by means of some encoding.
Gödel's incompleteness theorems are two theorems of mathematical logic that are concerned with the limits of in formal axiomatic theories. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics. The theorems are widely, but not universally, interpreted as showing that Hilbert's program to find a complete and consistent set of axioms for all mathematics is impossible. The first incompleteness theorem states that no consistent system of axioms whose theorems can be listed by an effective procedure (i.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
The goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor
Explores harmonic forms on Riemann surfaces and the uniqueness of solutions to harmonic equations.
, , , , ,
In this paper, we study exact multi-level logic benchmarks. We refer to an exact logic benchmark, or exact benchmark in short, as the optimal implementation of a given Boolean function, in terms of minimum number of logic levels and/or nodes. Exact benchma ...
Ieee2017
Recent work by Koblitz and Menezes has highlighted the existence, in some cases, of apparent separations between the hardness of breaking discrete logarithms in a particular group, and the hardness of solving in that group problems to which the security of ...