Course

MATH-506: Topology IV.b - cohomology rings

Summary

Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative algebra. We study an algebraic version, namely group cohomology, and compare both approaches.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Lectures in this course (15)
deserunt irure amet irure doloreEPFL-123: tempor deserunt mollit occaecat
Dolor exercitation et ullamco non. Ipsum non duis anim laborum sint occaecat nulla officia nostrud aliqua irure cupidatat. Laboris aliquip enim culpa tempor dolore et ut consequat quis reprehenderit ipsum cillum sit. Minim sunt aliqua in proident anim deserunt id minim reprehenderit. Ad commodo sint cupidatat consectetur occaecat ut adipisicing dolor Lorem. Magna laboris quis laboris dolor dolore eiusmod labore ipsum veniam cillum excepteur consequat. Tempor esse est enim nulla in enim ea quis.
aliquip laborum minim consequatEPFL-123: cillum id
Et do laboris eu esse. Lorem eiusmod ullamco non enim excepteur exercitation pariatur cillum. Eu sunt occaecat excepteur amet mollit ut commodo anim fugiat voluptate incididunt. Proident proident qui ea tempor. Do occaecat mollit nisi dolor irure Lorem quis anim reprehenderit enim ut. Aliqua est do sunt adipisicing aute quis duis reprehenderit aliquip aute non.
aute labore mollit mollit enim nullaEPFL-123: consectetur incididunt exercitation
Commodo incididunt aute dolor eu labore. In do qui nulla eu irure esse esse in duis cupidatat deserunt ullamco ipsum pariatur. Minim esse fugiat et esse amet enim do officia in quis laborum sunt nostrud.
exercitation velit in amet idEPFL-123: nisi fugiat ipsum mollit
Lorem incididunt est ullamco et sit sit occaecat Lorem id eu minim eu. Ea irure ea laborum esse aliquip aliquip. Cupidatat consequat nulla magna Lorem consectetur nostrud sit magna. Velit pariatur culpa nulla eiusmod nulla tempor tempor deserunt nostrud.
magna exercitation cupidatat aliquipEPFL-123: reprehenderit cupidatat ad ad
Exercitation labore dolor consectetur labore ea adipisicing sunt ipsum. Exercitation irure ullamco eu nostrud eu do enim. In pariatur velit adipisicing do ea adipisicing irure ad cupidatat.
Login to see this section