Self-assembly is a process in which a disordered system of pre-existing components forms an organized structure or pattern as a consequence of specific, local interactions among the components themselves, without external direction. When the constitutive components are molecules, the process is termed molecular self-assembly.
Self-assembly can be classified as either static or dynamic. In static self-assembly, the ordered state forms as a system approaches equilibrium, reducing its free energy. However, in dynamic self-assembly, patterns of pre-existing components organized by specific local interactions are not commonly described as "self-assembled" by scientists in the associated disciplines. These structures are better described as "self-organized", although these terms are often used interchangeably.
Self-assembly in the classic sense can be defined as the spontaneous and reversible organization of molecular units into ordered structures by non-covalent interactions. The first property of a self-assembled system that this definition suggests is the spontaneity of the self-assembly process: the interactions responsible for the formation of the self-assembled system act on a strictly local level—in other words, the nanostructure builds itself.
Although self-assembly typically occurs between weakly-interacting species, this organization may be transferred into strongly-bound covalent systems. An example for this may be observed in the self-assembly of polyoxometalates. Evidence suggests that such molecules assemble via a dense-phase type mechanism whereby small oxometalate ions first assemble non-covalently in solution, followed by a condensation reaction that covalently binds the assembled units. This process can be aided by the introduction of templating agents to control the formed species. In such a way, highly organized covalent molecules may be formed in a specific manner.
Self-assembled nano-structure is an object that appears as a result of ordering and aggregation of individual nano-scale objects guided by some physical principle.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The student will learn process techniques and applications of modern micro- and nanofabrication, as practiced in a clean room, with a focus on silicon, but also multi-material microsystems and flexibl
This course introduces advanced fabrication methods enabling the manufacturing of novel micro- and nanosystems (NEMS/MEMS). Both top-down techniques (lithography, stenciling, scanning probes, additive
The course presents materials science and engineering from the perspective of biological applications. Lectures provide solid fundamentals on the design, fabrication, and characterization of materials
Explores setting DPD simulation parameters and applications in soft matter and cellular biophysics.
Covers assembly techniques, calibrations, data analysis, and continuous recording for muscles.
Delves into the significance of size, shape, and charge in cellular endocytosis processes, emphasizing the design of materials for efficient cellular uptake.
A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At the lowest range, metal particles smaller than 1 nm are usually called atom clusters instead.
In chemistry and materials science, molecular self-assembly is the process by which molecules adopt a defined arrangement without guidance or management from an outside source. There are two types of self-assembly: intermolecular and intramolecular. Commonly, the term molecular self-assembly refers to the former, while the latter is more commonly called folding. Molecular self-assembly is a key concept in supramolecular chemistry. This is because assembly of molecules in such systems is directed through non-covalent interactions (e.
A gel is a semi-solid that can have properties ranging from soft and weak to hard and tough. Gels are defined as a substantially dilute cross-linked system, which exhibits no flow when in the steady-state, although the liquid phase may still diffuse through this system. A gel has been defined phenomenologically as a soft, solid or solid-like material consisting of two or more components, one of which is a liquid, present in substantial quantity.
Stabilizing liquid-liquid interfaces, whether between miscible or immiscible liquids, is crucial for a wide range of applications, including energy storage, microreactors, and biomimetic structures. In this study, a versatile approach for stabilizing the w ...
Control of nanomaterial dimensions with atomic precision through synthetic methods is essential to understanding and engineering of nanomaterials. For single-layer inorganic materials, size and shape controls have been achieved by self-assembly and surface ...
Weinheim2024
, , ,
Superlattice formation afforded by metal halide perovskite nanocrystals has been a phenomenon of interest due to the high structural order induced in these self-assemblies, an order that is influenced by the surface chemistry and particle morphology of the ...