Ethernet over twisted-pair technologies use twisted-pair cables for the physical layer of an Ethernet computer network. They are a subset of all Ethernet physical layers.
Early Ethernet used various grades of coaxial cable, but in 1984, StarLAN showed the potential of simple unshielded twisted pair. This led to the development of 10BASE-T and its successors 100BASE-TX, 1000BASE-T and 10GBASE-T, supporting speeds of 10 and 100 megabit per second, then 1 and 10 gigabit per second respectively.
Two new variants of 10 megabit per second Ethernet over a single twisted pair, known as 10BASE-T1S and 10BASE-T1L, were standardized in IEEE Std 802.3cg-2019. 10BASE-T1S has its origins in the automotive industry and may be useful in other short-distance applications where substantial electrical noise is present. 10BASE-T1L is a long-distance Ethernet, supporting connections up to 1 km in length. Both of these standards are finding applications implementing the Internet of things. 10BASE-T1S is a direct competitor of CAN XL in the automotive space and includes a PHY-Level Collision Avoidance scheme (PLCA).
The earlier standards use 8P8C modular connectors, and supported cable standards range from to . These cables typically have four pairs of wires for each connection, although early Ethernet used only two of the pairs. Unlike the earlier -T standards, the -T1 interfaces were designed to operate over a single pair of conductors and introduce the use of two new connectors referred to as IEC 63171-1 and IEC 63171-6.
The first two early designs of twisted-pair networking were StarLAN, standardized by the IEEE Standards Association as IEEE 802.3e in 1986, at one megabit per second, and LattisNet, developed in January 1987, at 10 megabit per second. Both were developed before the 10BASE-T standard (published in 1990 as IEEE 802.3i) and used different signaling, so they were not directly compatible with it.
In 1988, AT&T released StarLAN 10, named for working at 10 Mbit/s.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A network interface controller (NIC, also known as a network interface card, network adapter, LAN adapter or physical network interface, and by similar terms) is a computer hardware component that connects a computer to a computer network. Early network interface controllers were commonly implemented on expansion cards that plugged into a computer bus. The low cost and ubiquity of the Ethernet standard means that most newer computers have a network interface built into the motherboard, or is contained into a USB-connected dongle.
10BASE2 (also known as cheapernet, thin Ethernet, thinnet, and thinwire) is a variant of Ethernet that uses thin coaxial cable terminated with BNC connectors to build a local area network. During the mid to late 1980s this was the dominant 10 Mbit/s Ethernet standard. The use of twisted pair networks competed with 10BASE2's use of a single coaxial cable. In 1988, Ethernet over twisted pair was introduced, running at the same speed of 10 Mbit/s. In 1995, the Fast Ethernet standard upgraded the speed to 100 Mbit/s, and no such speed improvement was ever made for thinnet.
In computer networking, Fast Ethernet physical layers carry traffic at the nominal rate of 100 Mbit/s. The prior Ethernet speed was 10 Mbit/s. Of the Fast Ethernet physical layers, 100BASE-TX is by far the most common. Fast Ethernet was introduced in 1995 as the IEEE 802.3u standard and remained the fastest version of Ethernet for three years before the introduction of Gigabit Ethernet. The acronym GE/FE is sometimes used for devices supporting both standards.
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
This course offers an introduction to control systems using communication networks for interfacing sensors, actuators, controllers, and processes. Challenges due to network non-idealities and opportun
Real-time communication over Ethernet is becoming important in various application areas of cyber-physical systems such as industrial automation and control, avionics, and automotive networking. Since such applications are typically time critical, Ethernet ...
We address the intrinsic polarization and screening of an external electric field in a broad range of ordered and twisted configurations of multilayer graphene, using an ab initio approach combining density functional theory and the Wannier function formal ...
AMER CHEMICAL SOC2021
,
The convergence speed of machine learning models trained with Federated Learning is significantly affected by non-independent and identically distributed (non-IID) data partitions, even more so in a fully decentralized setting without a central server. In ...