In quantum computing, and more specifically in superconducting quantum computing, a transmon is a type of superconducting charge qubit that was designed to have reduced sensitivity to charge noise. The transmon was developed by Robert J. Schoelkopf, Michel Devoret, Steven M. Girvin, and their colleagues at Yale University in 2007. Its name is an abbreviation of the term transmission line shunted plasma oscillation qubit; one which consists of a Cooper-pair box "where the two superconductors are also capacitatively shunted in order to decrease the sensitivity to charge noise, while maintaining a sufficient anharmonicity for selective qubit control". The transmon achieves its reduced sensitivity to charge noise by significantly increasing the ratio of the Josephson energy to the charging energy. This is accomplished through the use of a large shunting capacitor. The result is energy level spacings that are approximately independent of offset charge. Planar on-chip transmon qubits have T1 coherence times approximately 30 μs to 40 μs. Recent work has shown significantly improved T1 times as long as 95 μs by replacing the superconducting transmission line cavity with a three-dimensional superconducting cavity, and by replacing niobium with tantalum in the transmon device, T1 is further improved up to 0.3 ms. These results demonstrate that previous T1 times were not limited by Josephson junction losses. Understanding the fundamental limits on the coherence time in superconducting qubits such as the transmon is an active area of research. The transmon design is similar to the first design of the charge qubit known as a "Cooper-pair box"; both are described by the same Hamiltonian, with the only difference being the ratio. Here is the Josephson energy of the junction, and is the charging energy inversely proportional to the total capacitance of the qubit circuit. Transmons typically have (while for typical Cooper-pair-box qubits), which is achieved by shunting the Josephson junction with an additional large capacitor.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (55)
Related concepts (2)
Superconducting quantum computing
Superconducting quantum computing is a branch of solid state quantum computing that implements superconducting electronic circuits using superconducting qubits as artificial atoms, or quantum dots. For superconducting qubits, the two logic states are the ground state and the excited state, denoted respectively. Research in superconducting quantum computing is conducted by companies such as Google, IBM, IMEC, BBN Technologies, Rigetti, and Intel. Many recently developed QPUs (quantum processing units, or quantum chips) utilize superconducting architecture.
Qubit
In quantum computing, a qubit (ˈkjuːbɪt) or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, one of the simplest quantum systems displaying the peculiarity of quantum mechanics. Examples include the spin of the electron in which the two levels can be taken as spin up and spin down; or the polarization of a single photon in which the two states can be taken to be the vertical polarization and the horizontal polarization.