Summary
Artificial life (often abbreviated ALife or A-Life) is a field of study wherein researchers examine systems related to natural life, its processes, and its evolution, through the use of simulations with computer models, robotics, and biochemistry. The discipline was named by Christopher Langton, an American theoretical biologist, in 1986. In 1987 Langton organized the first conference on the field, in Los Alamos, New Mexico. There are three main kinds of alife, named for their approaches: soft, from software; hard, from hardware; and wet, from biochemistry. Artificial life researchers study traditional biology by trying to recreate aspects of biological phenomena. Artificial life studies the fundamental processes of living systems in artificial environments in order to gain a deeper understanding of the complex information processing that define such systems. These topics are broad, but often include evolutionary dynamics, emergent properties of collective systems, biomimicry, as well as related issues about the philosophy of the nature of life and the use of lifelike properties in artistic works. The modeling philosophy of artificial life strongly differs from traditional modeling by studying not only "life-as-we-know-it" but also "life-as-it-might-be". A traditional model of a biological system will focus on capturing its most important parameters. In contrast, an alife modeling approach will generally seek to decipher the most simple and general principles underlying life and implement them in a simulation. The simulation then offers the possibility to analyse new and different lifelike systems. Vladimir Georgievich Red'ko proposed to generalize this distinction to the modeling of any process, leading to the more general distinction of "processes-as-we-know-them" and "processes-as-they-could-be". At present, the commonly accepted definition of life does not consider any current alife simulations or software to be alive, and they do not constitute part of the evolutionary process of any ecosystem.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
MATH-642: Artificial Life
We will give an overview of the field of Artificial Life (Alife). We study questions such as emergence of complexity, self-reproduction, evolution, both through concrete models and through mathematica
BIOENG-456: Controlling behavior in animals and robots
Students will acquire an integrative view on biological and artificial algorithms for controlling autonomous behaviors. Students will synthesize and apply this knowledge in oral presentations and comp
MICRO-515: Evolutionary robotics
The course describes theories, methods, and technologies for designing robots and artificial systems inspired by evolution, development, and learning. It also shows how robotic models can help to unde
Show more
Related publications (78)
Related concepts (16)
Tierra (computer simulation)
Tierra is a computer simulation developed by ecologist Thomas S. Ray in the early 1990s in which computer programs compete for time (central processing unit (CPU) time) and space (access to main memory). In this context, the computer programs in Tierra are considered to be evolvable and can mutate, self-replicate and recombine. Tierra's virtual machine is written in C. It operates on a custom instruction set designed to facilitate code changes and reordering, including features such as jump to template (as opposed to the relative or absolute jumps common to most instruction sets).
Avida
Avida is an artificial life software platform to study the evolutionary biology of self-replicating and evolving computer programs (digital organisms). Avida is under active development by Charles Ofria's Digital Evolution Lab at Michigan State University; the first version of Avida was designed in 1993 by Ofria, Chris Adami and C. Titus Brown at Caltech, and has been fully reengineered by Ofria on multiple occasions since then. The software was originally inspired by the Tierra system.
Multi-agent system
A multi-agent system (MAS or "self-organized system") is a computerized system composed of multiple interacting intelligent agents. Multi-agent systems can solve problems that are difficult or impossible for an individual agent or a monolithic system to solve. Intelligence may include methodic, functional, procedural approaches, algorithmic search or reinforcement learning. Despite considerable overlap, a multi-agent system is not always the same as an agent-based model (ABM).
Show more