Summary
A multi-agent system (MAS or "self-organized system") is a computerized system composed of multiple interacting intelligent agents. Multi-agent systems can solve problems that are difficult or impossible for an individual agent or a monolithic system to solve. Intelligence may include methodic, functional, procedural approaches, algorithmic search or reinforcement learning. Despite considerable overlap, a multi-agent system is not always the same as an agent-based model (ABM). The goal of an ABM is to search for explanatory insight into the collective behavior of agents (which don't necessarily need to be "intelligent") obeying simple rules, typically in natural systems, rather than in solving specific practical or engineering problems. The terminology of ABM tends to be used more often in the science, and MAS in engineering and technology. Applications where multi-agent systems research may deliver an appropriate approach include online trading, disaster response, target surveillance and social structure modelling. Multi-agent systems consist of agents and their environment. Typically multi-agent systems research refers to software agents. However, the agents in a multi-agent system could equally well be robots, humans or human teams. A multi-agent system may contain combined human-agent teams. Agents can be divided into types spanning simple to complex. Categories include: Passive agents or "agent without goals" (such as obstacle, apple or key in any simple simulation) Active agents with simple goals (like birds in flocking, or wolf–sheep in prey-predator model) Cognitive agents (complex calculations) Agent environments can be divided into: Virtual Discrete Continuous Agent environments can also be organized according to properties such as accessibility (whether it is possible to gather complete information about the environment), determinism (whether an action causes a definite effect), dynamics (how many entities influence the environment in the moment), discreteness (whether the number of possible actions in the environment is finite), episodicity (whether agent actions in certain time periods influence other periods), and dimensionality (whether spatial characteristics are important factors of the environment and the agent considers space in its decision making).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.