Summary
Introgression, also known as introgressive hybridization, in genetics is the transfer of genetic material from one species into the gene pool of another by the repeated backcrossing of an interspecific hybrid with one of its parent species. Introgression is a long-term process, even when artificial; it may take many hybrid generations before significant backcrossing occurs. This process is distinct from most forms of gene flow in that it occurs between two populations of different species, rather than two populations of the same species. Introgression also differs from simple hybridization. Simple hybridization results in a relatively even mixture; gene and allele frequencies in the first generation will be a uniform mix of two parental species, such as that observed in mules. Introgression, on the other hand, results in a complex, highly variable mixture of genes, and may only involve a minimal percentage of the donor genome. Introgression or introgressive hybridization is the incorporation (usually via hybridization and backcrossing) of novel genes and/or alleles from one taxon into the gene pool of a second, distinct taxon. This introgression is considered 'adaptive' if the genetic transfer results in an overall increase in the recipient taxon's fitness. Ancient introgression events can leave traces of extinct species in present-day genomes, a phenomenon known as ghost introgression. Introgression is an important source of genetic variation in natural populations and may contribute to adaptation and even adaptive radiation. It can occur across hybrid zones due to chance, selection or hybrid zone movement. There is evidence that introgression is a ubiquitous phenomenon in plants and animals, including humans, in which it may have introduced the microcephalin D allele. It has been proposed that, historically, introgression with wild animals is a large contributor to the wide range of diversity found in domestic animals, rather than multiple independent domestication events.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.