In mathematical physics, the Dirac delta distribution (δ distribution), also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. The current understanding of the unit impulse is as a linear functional that maps every continuous function (e.g., ) to its value at zero of its domain (), or as the weak limit of a sequence of bump functions (e.g., ), which are zero over most of the real line, with a tall spike at the origin. Bump functions are thus sometimes called "approximate" or "nascent" delta distributions. The delta function was introduced by physicist Paul Dirac as a tool for the normalization of state vectors. It also has uses in probability theory and signal processing. Its validity was disputed until Laurent Schwartz developed the theory of distributions where it is defined as a linear form acting on functions. The Kronecker delta function, which is usually defined on a discrete domain and takes values 0 and 1, is the discrete analog of the Dirac delta function. The graph of the Dirac delta is usually thought of as following the whole x-axis and the positive y-axis. The Dirac delta is used to model a tall narrow spike function (an impulse), and other similar abstractions such as a point charge, point mass or electron point. For example, to calculate the dynamics of a billiard ball being struck, one can approximate the force of the impact by a Dirac delta. In doing so, one not only simplifies the equations, but one also is able to calculate the motion of the ball by only considering the total impulse of the collision without a detailed model of all of the elastic energy transfer at subatomic levels (for instance). To be specific, suppose that a billiard ball is at rest. At time it is struck by another ball, imparting it with a momentum P, with units kg⋅m⋅s−1.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (31)
EE-205: Signals and systems (for EL)
Ce cours pose les bases d'un concept essentiel en ingénierie : la notion de système. Plus spécifiquement, le cours présente la théorie des systèmes linéaires invariants dans le temps (SLIT), qui sont
MATH-305: Introduction to partial differential equations
This is an introductory course on Elliptic Partial Differential Equations. The course will cover the theory of both classical and generalized (weak) solutions of elliptic PDEs.
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Show more
Related lectures (112)
Differential Forms Integration
Covers the integration of differential forms on smooth manifolds, including the concepts of closed and exact forms.
Homology of Riemann Surfaces
Explores the homology of Riemann surfaces, including singular homology and the standard n-simplex.
Convolution of Distributions and Differential Equations
Explores the convolution of tempered distributions and solving differential equations using fundamental solutions.
Show more
Related publications (140)

Stable parameterization of continuous and piecewise-linear functions

Michaël Unser, Alexis Marie Frederic Goujon, Joaquim Gonçalves Garcia Barreto Campos

Rectified-linear-unit (ReLU) neural networks, which play a prominent role in deep learning, generate continuous and piecewise-linear (CPWL) functions. While they provide a powerful parametric representation, the mapping between the parameter and function s ...
2023

Polynomial-time universality and limitations of deep learning

Emmanuel Abbé

The goal of this paper is to characterize function distributions that general neural networks trained by descent algorithms (GD/SGD), can or cannot learn in polytime. The results are: (1) The paradigm of general neural networks trained by SGD is poly-time ...
WILEY2023

Incentive Mechanism in the Sponsored Content Market With Network Effects

Olga Fink, Mina Montazeri

We propose an incentive mechanism for the sponsored content provider (CP) market in which the communication of users can be represented by a graph, and the private information of the users is assumed to have a continuous distribution function. The CP stipu ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023
Show more
Related concepts (30)
Fourier transform
In physics and mathematics, the Fourier transform (FT) is a transform that converts a function into a form that describes the frequencies present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made the Fourier transform is sometimes called the frequency domain representation of the original function.
Bessel function
Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation for an arbitrary complex number , which represents the order of the Bessel function. Although and produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of . The most important cases are when is an integer or half-integer.
Wave equation
The (two-way) wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields - as they occur in classical physics - such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics. Single mechanical or electromagnetic waves propagating in a pre-defined direction can also be described with the first-order one-way wave equation, which is much easier to solve and also valid for inhomogeneous media.
Show more
Related MOOCs (6)
Introduction to optimization on smooth manifolds: first order methods
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Introduction to Astrophysics
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Introduction à l'Astrophysique
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.