En mathématiques, plus précisément en analyse, la distribution de Dirac, aussi appelée par abus de langage fonction δ de Dirac, introduite par Paul Dirac, peut être informellement considérée comme une fonction qui prend une « valeur » infinie en 0, et la valeur zéro partout ailleurs, et dont l'intégrale sur R est égale à 1. La représentation graphique de la « fonction » δ peut être assimilée à l'axe des abscisses en entier et le demi axe des ordonnées positives. D'autre part, δ est égale à la dérivée (au sens des distributions) de la fonction de Heaviside. Cette « fonction » δ de Dirac n'est pas une fonction mais c'est une mesure de Borel, donc une distribution.
La fonction δ de Dirac est utile comme approximation de fonctions dont la représentation graphique a la forme d'une grande pointe étroite. C'est le même type d'abstraction qui représente une charge ponctuelle, une masse ponctuelle ou un électron ponctuel. Par exemple, pour calculer la vitesse d'une balle de tennis, frappée par une raquette, nous pouvons assimiler la force de la raquette frappant la balle à une fonction δ. De cette manière, nous simplifions non seulement les équations, mais nous pouvons également calculer le mouvement de la balle en considérant seulement toute l'impulsion de la raquette contre la balle, plutôt que d'exiger la connaissance des détails de la façon dont la raquette a transféré l'énergie à la balle.
Par extension, l'expression « un Dirac » (ou « un pic de Dirac ») est donc souvent utilisée par les physiciens pour désigner une fonction ou une courbe « piquée » en une valeur donnée.
thumb|right|upright=1.5|Représentation graphique formelle de la fonction de Dirac. La flèche signifie que toute la « masse » de la fonction est concentrée en 0 et vaut 1.
On se place dans R. La « fonction δ de Dirac » est la mesure borélienne de support le singleton {0} et de masse 1, c'est-à-dire la mesure de probabilité δ telle que δ({0}) = 1. Plus explicitement, pour tout borélien A de R :
Par abus de langage, on dit que la « fonction » δ de Dirac est nulle partout sauf en 0, où sa valeur infinie correspond à une « masse » de 1.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours pose les bases d'un concept essentiel en ingénierie : la notion de système. Plus spécifiquement, le cours présente la théorie des systèmes linéaires invariants dans le temps (SLIT), qui sont
This is an introductory course on Elliptic Partial Differential Equations. The course will cover the theory of both classical and generalized (weak) solutions of elliptic PDEs.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
thumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
En mathématiques, et plus précisément en analyse, les fonctions de Bessel, appelées aussi quelquefois fonctions cylindriques, découvertes par le mathématicien suisse Daniel Bernoulli, portent le nom du mathématicien allemand Friedrich Wilhelm Bessel. Bessel développa l'analyse de ces fonctions en 1816 dans le cadre de ses études du mouvement des planètes induit par l'interaction gravitationnelle, généralisant les découvertes antérieures de Bernoulli.
L' ou est une équation aux dérivées partielles en physique qui régit la propagation d'une onde. C'est une équation vérifiée par de nombreux phénomènes ondulatoires de la vie courante comme le son ou la lumière. avec : l'opérateur laplacien ; l'onde vectorielle; une constante, vitesse de propagation de dans le milieu considéré ; L'utilisation du laplacien permet de s'affranchir du choix d'un système de coordonnées. avec : l'opérateur de dérivée partielle seconde en appliqué sur ; , les trois variables cartésiennes de l'espace, et celle du temps.
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
The goal of this paper is to characterize function distributions that general neural networks trained by descent algorithms (GD/SGD), can or cannot learn in polytime. The results are: (1) The paradigm of general neural networks trained by SGD is poly-time ...
WILEY2023
, ,
Rectified-linear-unit (ReLU) neural networks, which play a prominent role in deep learning, generate continuous and piecewise-linear (CPWL) functions. While they provide a powerful parametric representation, the mapping between the parameter and function s ...
2023
,
We propose an incentive mechanism for the sponsored content provider (CP) market in which the communication of users can be represented by a graph, and the private information of the users is assumed to have a continuous distribution function. The CP stipu ...