Concept

Nuclear electric rocket

Summary
A nuclear electric rocket (more properly nuclear electric propulsion) is a type of spacecraft propulsion system where thermal energy from a nuclear reactor is converted to electrical energy, which is used to drive an ion thruster or other electrical spacecraft propulsion technology. The nuclear electric rocket terminology is slightly inconsistent, as technically the "rocket" part of the propulsion system is non-nuclear and could also be driven by solar panels. This is in contrast with a nuclear thermal rocket, which directly uses reactor heat to add energy to a working fluid, which is then expelled out of a rocket nozzle. The key elements to NEP are: A compact reactor core An electric generator A compact waste heat rejection system such as heat pipes An electric power conditioning and distribution system Electrically powered spacecraft propulsion A 1963 paper by Myron Levoy proposed a hybrid nuclear-electric engine design, which would have been able to work both in open-cycle mode as a nuclear thermal engine during mission phases requiring high thrust, as well as in closed-cycle mode as a nuclear-electric engine with low thrust, but high efficiency during remaining mission phases. The proposed application of this engine design was for a fast human-crewed round-trip mission to Mars. In 2001, the Safe affordable fission engine was under development, with a tested 30 kW nuclear heat source intended to lead to the development of a 400 kW thermal reactor with Brayton cycle gas turbines to produce electric power. Waste heat rejection was intended to be accomplished using low-mass heat pipe technology. Safety was intended to be assured by a rugged design. Project Prometheus was an early 2000s NASA study on nuclear electric spacecraft. Kilopower is the latest NASA reactor development program, but is intended for surface use only. The TEM project started in 2009 with the goal of powering a Mars engine. March 2016 - First batch of nuclear fuel received A pebble bed reactor using high mass-flow gaseous nitrogen coolant near normal atmospheric pressures is a possible heat source.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.