Aquatic respiration is the process whereby an aquatic organism exchanges respiratory gases with water, obtaining oxygen from oxygen dissolved in water and excreting carbon dioxide and some other metabolic waste products into the water.
In very small animals, plants and bacteria, simple diffusion of gaseous metabolites is sufficient for respiratory function and no special adaptations are found to aid respiration. Passive diffusion or active transport are also sufficient mechanisms for many larger aquatic animals such as many worms, jellyfish, sponges, bryozoans and similar organisms. In such cases, no specific respiratory organs or organelles are found.
Although higher plants typically use carbon dioxide and excrete oxygen during photosynthesis, they also respire and, particularly during darkness, many plants excrete carbon dioxide and require oxygen to maintain normal functions. In fully submerged aquatic higher plants specialised structures such as stoma on leaf surfaces control gas interchange. In many species, these structures can be controlled to be open or closed depending on environmental conditions. In conditions of high light intensity and relatively high carbonate ion concentrations, oxygen may be produced in sufficient quantities to form gaseous bubbles on the surface of leaves and may produce oxygen super-saturation in the surrounding water body.
All animals that practice truly aquatic respiration are poikilothermic. All aquatic homeothermic animals and birds including cetaceans and penguins are air breathing despite a fully aquatic life-style.
Echinoderms have a specialised water vascular system which provides a number of functions including providing the hydraulic power for tube feet but also serves to convey oxygenated sea water into the body and carry waste water out again. In many genera, the water enters through a madreporite, a sieve like structure on the upper surface but may also enter via ciliary action in the tube feet or via special cribiform organelles.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Animal locomotion, in ethology, is any of a variety of methods that animals use to move from one place to another. Some modes of locomotion are (initially) self-propelled, e.g., running, swimming, jumping, flying, hopping, soaring and gliding. There are also many animal species that depend on their environment for transportation, a type of mobility called passive locomotion, e.g., sailing (some jellyfish), kiting (spiders), rolling (some beetles and spiders) or riding other animals (phoresis).
Mollusca is the second-largest phylum of invertebrate animals, after the Arthropoda; members are known as molluscs or mollusks (ˈmɒləsk). Around 85,000 extant species of molluscs are recognized. The number of fossil species is estimated between 60,000 and 100,000 additional species. The proportion of undescribed species is very high. Many taxa remain poorly studied. Molluscs are the largest marine phylum, comprising about 23% of all the named marine organisms. Numerous molluscs also live in freshwater and terrestrial habitats.
A gill (ɡɪl) is a respiratory organ that many aquatic organisms use to extract dissolved oxygen from water and to excrete carbon dioxide. The gills of some species, such as hermit crabs, have adapted to allow respiration on land provided they are kept moist. The microscopic structure of a gill presents a large surface area to the external environment. Branchia (pl. branchiae) is the zoologists' name for gills (from Ancient Greek ).
We are interested in the mathematical modeling of the deformation of the human lung tissue, called the lung parenchyma, during the respiration process. The parenchyma is a foam-like elastic material containing millions of air-filled alveoli connected by a ...
World Scientific Publ Co Pte Ltd2015
, ,
Degradation of cementitious materials by sulfate ions is commonly classified into chemical and physical sulfate attack. So-called "physical" attack dominates in many field situations, but laboratory testing focuses on "chemical" attack under full-immersion ...