Summary
Gas exchange is the physical process by which gases move passively by diffusion across a surface. For example, this surface might be the air/water interface of a water body, the surface of a gas bubble in a liquid, a gas-permeable membrane, or a biological membrane that forms the boundary between an organism and its extracellular environment. Gases are constantly consumed and produced by cellular and metabolic reactions in most living things, so an efficient system for gas exchange between, ultimately, the interior of the cell(s) and the external environment is required. Small, particularly unicellular organisms, such as bacteria and protozoa, have a high surface-area to volume ratio. In these creatures the gas exchange membrane is typically the cell membrane. Some small multicellular organisms, such as flatworms, are also able to perform sufficient gas exchange across the skin or cuticle that surrounds their bodies. However, in most larger organisms, which have small surface-area to volume ratios, specialised structures with convoluted surfaces such as gills, pulmonary alveoli and spongy mesophylls provide the large area needed for effective gas exchange. These convoluted surfaces may sometimes be internalised into the body of the organism. This is the case with the alveoli, which form the inner surface of the mammalian lung, the spongy mesophyll, which is found inside the leaves of some kinds of plant, or the gills of those molluscs that have them, which are found in the mantle cavity. In aerobic organisms, gas exchange is particularly important for respiration, which involves the uptake of oxygen (O2) and release of carbon dioxide (CO2). Conversely, in oxygenic photosynthetic organisms such as most land plants, uptake of carbon dioxide and release of both oxygen and water vapour are the main gas-exchange processes occurring during the day. Other gas-exchange processes are important in less familiar organisms: e.g. carbon dioxide, methane and hydrogen are exchanged across the cell membrane of methanogenic archaea.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
BIO-378: Physiology lab I
Le TP de physiologie introduit les approches expérimentales du domaine biomédical, avec les montages de mesure, les capteurs, le conditionnement des signaux, l'acquisition et traitement de données. Le
BIO-377: Physiology by systems
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
Related lectures (26)
Respiratory System Function: Gas Exchange and Hemoglobin
Explores gas exchange dynamics, hemoglobin affinity, and gas diffusion in the respiratory system.
Respiratory System Function: Gas Exchange and Transport
Covers gas exchange dynamics, alveolar composition, and hemoglobin affinity.
Respiratory System: Gas Exchange
Explores gas exchange in the respiratory system, emphasizing oxygen and carbon dioxide diffusion between alveoli and capillaries.
Show more
Related publications (50)

The mitochondrial calcium uniporter (MCU) activates mitochondrial respiration and enhances mobility by regulating mitochondrial redox state

Sonia Karaz, Umberto De Marchi, Vincenzo Sorrentino, Federico Sizzano

Regulation of mitochondrial redox balance is emerging as a key event for cell signaling in both physiological and pathological conditions. However, the link between the mitochondrial redox state and the modulation of these conditions remains poorly defined ...
ELSEVIER2023

On the dependence of Water Use Efficiency on aridity.

Gabriele Manoli, Sara Bonetti

Water use efficiency (WUE) describes how efficiently plants transpire water to assimilate carbon and produce biomass. Here, we used a variety of data sources, including leaf-level gas exchange measurements, tree-ring isotopes, flux-tower observations, and ...
2023

In vivo application and validation of a novel noninvasive method to estimate the end-systolic elastance

Nikolaos Stergiopulos, Georgios Rovas, Vasiliki Bikia, Stamatia Zoi Pagoulatou

Accurate assessment of the left ventricular (LV) systolic function is indispensable in the clinic. However, estimation of a precise index of cardiac contractility, i.e., the end-systolic elastance (E-es), is invasive and cannot be established as clinical r ...
2021
Show more
Related units (1)
Related concepts (21)
Respiration (physiology)
In physiology, respiration is the movement of oxygen from the outside environment to the cells within tissues, and the removal of carbon dioxide in the opposite direction that's to the environment. The physiological definition of respiration differs from the biochemical definition, which refers to a metabolic process by which an organism obtains energy (in the form of ATP and NADPH) by oxidizing nutrients and releasing waste products.
Respiratory system
The respiratory system (also respiratory apparatus, ventilatory system) is a biological system consisting of specific organs and structures used for gas exchange in animals and plants. The anatomy and physiology that make this happen varies greatly, depending on the size of the organism, the environment in which it lives and its evolutionary history. In land animals the respiratory surface is internalized as linings of the lungs. Gas exchange in the lungs occurs in millions of small air sacs; in mammals and reptiles these are called alveoli, and in birds they are known as atria.
Breathing
Breathing (or ventilation) is the process of moving air into and from the lungs to facilitate gas exchange with the internal environment, mostly to flush out carbon dioxide and bring in oxygen. All aerobic creatures need oxygen for cellular respiration, which extracts energy from the reaction of oxygen with molecules derived from food and produces carbon dioxide as a waste product. Breathing, or "external respiration", brings air into the lungs where gas exchange takes place in the alveoli through diffusion.
Show more