A synchrotron light source is a source of electromagnetic radiation (EM) usually produced by a storage ring, for scientific and technical purposes. First observed in synchrotrons, synchrotron light is now produced by storage rings and other specialized particle accelerators, typically accelerating electrons. Once the high-energy electron beam has been generated, it is directed into auxiliary components such as bending magnets and insertion devices (undulators or wigglers) in storage rings and free electron lasers. These supply the strong magnetic fields perpendicular to the beam that are needed to convert high energy electrons into photons. The major applications of synchrotron light are in condensed matter physics, materials science, biology and medicine. A large fraction of experiments using synchrotron light involve probing the structure of matter from the sub-nanometer level of electronic structure to the micrometer and millimeter levels important in medical imaging. An example of a practical industrial application is the manufacturing of microstructures by the LIGA process. Synchrotron is one of the most expensive kinds of light source known, but it is practically the only viable luminous source of wide-band radiation in far infrared wavelength range for some applications, such as far-infrared absorption spectrometry. The primary figure of merit used to compare different sources of synchrotron radiation has been referred to as the "brightness", the "brilliance", and the "spectral brightness," with the latter term being recommended as the best choice by the Working Group on Synchrotron Nomenclature. Regardless of the name chosen, the term is a measure of the total flux of photons in a given six-dimensional phase space per unit bandwidth (BW). The spectral brightness is given by: where is the photons per second of the beam, and are the root mean square values for the size of the beam in the axes perpendicular to the beam direction, and are the RMS values for the beam solid angle in the x and y dimensions, and is the bandwidth, or spread in beam frequency around the central frequency.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (15)
PHYS-405: Experimental methods in physics
The course's objectivs are: Learning several advenced methods in experimental physics, and critical reading of experimental papers.
MSE-663: Powder Diffraction School - Modern Syncrotron Methods
Modern synchrotron-radiation methods not only provide data of exceptional quality, but have allowed previously inaccessible experiments to be performed. The school will give a broad overview of all po
PHYS-448: Introduction to particle accelerators
The course presents basic physics ideas underlying the workings of modern accelerators. We will examine key features and limitations of these machines as used in accelerator driven sciences like high
Show more
Related lectures (92)
Damping of the vertical emittance
Covers the impact of synchrotron radiation on the beam and the exponential decay of the emittance.
Synchrotron Radiation
Covers the properties of synchrotron radiation, including its emission by relativistic particles and its effect on the beam through radiation damping.
Surface Scattering in Nanosciences
Explores surface scattering phenomena, electron wavelength, constructive interference, organo-metallic particles, and synchrotron radiation in nanosciences.
Show more
Related publications (380)

The high flux nano-X-ray diffraction, fluorescence and imaging beamline ID27 for science under extreme conditions on the ESRF Extremely Brilliant Source

Tomasz Poreba

In this overview article, we present the main features of the upgraded ID27 beamline which is fully optimised to match the exceptional characteristics of the new Extremely Bright Source (EBS) of the European Synchrotron Radiation Facility (ESRF). The ID27 ...
Taylor & Francis Ltd2024

Energy-Efficient Particle Accelerators for Research

Particle accelerators are the drivers for large-scale research infrastructures for particle physics but also for many branches of condensed matter research. The types of accelerator-driven research infrastructures include particle colliders, neutron, muon ...
2024

Collimation simulations for the FCC-ee

Tatiana Pieloni, Milica Rakic, Bruce Roderik, Guillaume Clément Broggi, Giovanni Iadarola, Félix Simon Carlier

The collimation system of the Future Circular Collider, operating with leptons (FCC-ee), must protect not only the experiments against backgrounds, but also the machine itself from beam losses. With a 17.8 MJ stored energy of the electron and positron beam ...
Iop Publishing Ltd2024
Show more
Related concepts (13)
Synchrotron
A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed path increases with time during the accelerating process, being synchronized to the increasing kinetic energy of the particles. The synchrotron is one of the first accelerator concepts to enable the construction of large-scale facilities, since bending, beam focusing and acceleration can be separated into different components.
X-ray photoelectron spectroscopy
X-ray photoelectron spectroscopy (XPS) is a surface-sensitive quantitative spectroscopic technique based on the photoelectric effect that can identify the elements that exist within a material (elemental composition) or are covering its surface, as well as their chemical state, and the overall electronic structure and density of the electronic states in the material. XPS is a powerful measurement technique because it not only shows what elements are present, but also what other elements they are bonded to.
Free-electron laser
A free-electron laser (FEL) is a (fourth generation) light source producing extremely brilliant and short pulses of radiation. An FEL functions and behaves in many ways like a laser, but instead of using stimulated emission from atomic or molecular excitations, it employs relativistic electrons as a gain medium. Radiation is generated by a bunch of electrons passing through a magnetic structure (called undulator or wiggler).
Show more
Related MOOCs (3)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 2)
The first MOOC to provide an extensive introduction to synchrotron and XFEL facilities and associated techniques and applications.
The Radio Sky I: Science and Observations
Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.