An optical lattice is formed by the interference of counter-propagating laser beams, creating a spatially periodic polarization pattern. The resulting periodic potential may trap neutral atoms via the Stark shift. Atoms are cooled and congregate at the potential extrema (at maxima for blue-detuned lattices, and minima for red-detuned lattices). The resulting arrangement of trapped atoms resembles a crystal lattice and can be used for quantum simulation.
Atoms trapped in the optical lattice may move due to quantum tunneling, even if the potential well depth of the lattice points exceeds the kinetic energy of the atoms, which is similar to the electrons in a conductor. However, a superfluid–Mott insulator transition may occur, if the interaction energy between the atoms becomes larger than the hopping energy when the well depth is very large. In the Mott insulator phase, atoms will be trapped in the potential minima and cannot move freely, which is similar to the electrons in an insulator. In the case of Fermionic atoms, if the well depth is further increased the atoms are predicted to form an antiferromagnetic, i.e. Néel state at sufficiently low temperatures.
There are two important parameters of an optical lattice: the potential well depth and the periodicity.
The potential experienced by the atoms is related to the intensity of the laser used to generate the optical lattice. The potential depth of the optical lattice can be tuned in real time by changing the power of the laser, which is normally controlled by an acousto-optic modulator (AOM). The AOM is tuned to deflect a variable amount of the laser power into the optical lattice. Active power stabilization of the lattice laser can be accomplished by feedback of a photodiode signal to the AOM.
The periodicity of the optical lattice can be tuned by changing the wavelength of the laser or by changing the relative angle between the two laser beams. The real-time control of the periodicity of the lattice is still a challenging task.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
A quantum computer is a computer that exploits quantum mechanical phenomena. At small scales, physical matter exhibits properties of both particles and waves, and quantum computing leverages this behavior, specifically quantum superposition and entanglement, using specialized hardware that supports the preparation and manipulation of quantum states. Classical physics cannot explain the operation of these quantum devices, and a scalable quantum computer could perform some calculations exponentially faster than any modern "classical" computer.
Quantum many-body dynamics generically result in increasing entanglement that eventually leads to thermalization of local observables. This makes the exact description of the dynamics complex despite the apparent simplicity of (high-temperature) thermal st ...
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of spatial periodicity. Our variational state is parametrized in terms of a permutationally invariant part described by the Deep Sets neural-n ...
The properties of Kitaev materials are attracting ever increasing attention owing to their exotic properties. In realistic two-dimensional materials, the Kitaev interaction is often accompanied by the Dzyaloshinskii-Moriya interaction, which poses a challe ...