An optical lattice is formed by the interference of counter-propagating laser beams, creating a spatially periodic polarization pattern. The resulting periodic potential may trap neutral atoms via the Stark shift. Atoms are cooled and congregate at the potential extrema (at maxima for blue-detuned lattices, and minima for red-detuned lattices). The resulting arrangement of trapped atoms resembles a crystal lattice and can be used for quantum simulation. Atoms trapped in the optical lattice may move due to quantum tunneling, even if the potential well depth of the lattice points exceeds the kinetic energy of the atoms, which is similar to the electrons in a conductor. However, a superfluid–Mott insulator transition may occur, if the interaction energy between the atoms becomes larger than the hopping energy when the well depth is very large. In the Mott insulator phase, atoms will be trapped in the potential minima and cannot move freely, which is similar to the electrons in an insulator. In the case of Fermionic atoms, if the well depth is further increased the atoms are predicted to form an antiferromagnetic, i.e. Néel state at sufficiently low temperatures. There are two important parameters of an optical lattice: the potential well depth and the periodicity. The potential experienced by the atoms is related to the intensity of the laser used to generate the optical lattice. The potential depth of the optical lattice can be tuned in real time by changing the power of the laser, which is normally controlled by an acousto-optic modulator (AOM). The AOM is tuned to deflect a variable amount of the laser power into the optical lattice. Active power stabilization of the lattice laser can be accomplished by feedback of a photodiode signal to the AOM. The periodicity of the optical lattice can be tuned by changing the wavelength of the laser or by changing the relative angle between the two laser beams. The real-time control of the periodicity of the lattice is still a challenging task.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
PHYS-454: Quantum optics and quantum information
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
Séances de cours associées (3)
Effets mécaniques de la lumière
Explore les forces exercées par la lumière sur les atomes, y compris la force dipôle et la pression de rayonnement, et discute des applications comme le refroidissement Doppler.
Qubits: Comprendre les états quantiques et les opérations
Couvre les fondamentaux des qubits, y compris leurs états, leur superposition et leurs opérations en mécanique quantique.
Afficher plus
Publications associées (25)

Time-evolution of local information: Thermalization dynamics of local observables

Loïc Jean Pierre Herviou

Quantum many-body dynamics generically result in increasing entanglement that eventually leads to thermalization of local observables. This makes the exact description of the dynamics complex despite the apparent simplicity of (high-temperature) thermal st ...
SCIPOST FOUNDATION2022

Neural-network quantum states for periodic systems in continuous space

Giuseppe Carleo, Gabriel Maria Pescia

We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of spatial periodicity. Our variational state is parametrized in terms of a permutationally invariant part described by the Deep Sets neural-n ...
AMER PHYSICAL SOC2022

Interplay of Dzyaloshinskii-Moriya and Kitaev interactions for magnonic properties of Heisenberg-Kitaev honeycomb ferromagnets

Flaviano José Dos Santos

The properties of Kitaev materials are attracting ever increasing attention owing to their exotic properties. In realistic two-dimensional materials, the Kitaev interaction is often accompanied by the Dzyaloshinskii-Moriya interaction, which poses a challe ...
2021
Afficher plus
Personnes associées (1)
Concepts associés (1)
Informatique quantique
L'informatique quantique est le sous-domaine de l'informatique qui traite des calculateurs quantiques et des associés. La notion s'oppose à celle d'informatique dite « classique » n'utilisant que des phénomènes de physique classique, notamment de l'électricité (exemple du transistor) ou de mécanique classique (exemple historique de la machine analytique). En effet, l'informatique quantique utilise également des phénomènes de la mécanique quantique, à savoir l'intrication quantique et la superposition.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.