In relation to the history of mathematics, the Italian school of algebraic geometry refers to mathematicians and their work in birational geometry, particularly on algebraic surfaces, centered around Rome roughly from 1885 to 1935. There were 30 to 40 leading mathematicians who made major contributions, about half of those being Italian. The leadership fell to the group in Rome of Guido Castelnuovo, Federigo Enriques and Francesco Severi, who were involved in some of the deepest discoveries, as well as setting the style.
The emphasis on algebraic surfaces—algebraic varieties of dimension two—followed on from an essentially complete geometric theory of algebraic curves (dimension 1). The position in around 1870 was that the curve theory had incorporated with Brill–Noether theory the Riemann–Roch theorem in all its refinements (via the detailed geometry of the theta-divisor).
The classification of algebraic surfaces was a bold and successful attempt to repeat the division of algebraic curves by their genus g. The division of curves corresponds to the rough classification into the three types: g = 0 (projective line); g = 1 (elliptic curve); and g > 1 (Riemann surfaces with independent holomorphic differentials). In the case of surfaces, the Enriques classification was into five similar big classes, with three of those being analogues of the curve cases, and two more (elliptic fibrations, and K3 surfaces, as they would now be called) being with the case of two-dimension abelian varieties in the 'middle' territory. This was an essentially sound, breakthrough set of insights, recovered in modern complex manifold language by Kunihiko Kodaira in the 1950s, and refined to include mod p phenomena by Zariski, the Shafarevich school and others by around 1960. The form of the Riemann–Roch theorem on a surface was also worked out.
Some proofs produced by the school are not considered satisfactory because of foundational difficulties. These included frequent use of birational models in dimension three of surfaces that can have non-singular models only when embedded in higher-dimensional projective space.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is aimed to give students an introduction to the theory of algebraic curves, with an emphasis on the interplay between the arithmetic and the geometry of global fields. One of the principl
This is a course about group schemes, with an emphasis on structural theorems for algebraic groups (e.g. Barsotti--Chevalley's theorem). All the basics will be covered towards the proof of such theore
Guido Castelnuovo (14 August 1865 – 27 April 1952) was an Italian mathematician. He is best known for his contributions to the field of algebraic geometry, though his contributions to the study of statistics and probability theory are also significant. Castelnuovo was born in Venice. His father, Enrico Castelnuovo, was a novelist and campaigner for the unification of Italy. His mother Emma Levi was a relative of Cesare Lombroso and David Levi. His wife Elbina Marianna Enriques was the sister of mathematician Federigo Enriques and zoologist Paolo Enriques.
Abramo Giulio Umberto Federigo Enriques (5 January 1871 – 14 June 1946) was an Italian mathematician, now known principally as the first to give a classification of algebraic surfaces in birational geometry, and other contributions in algebraic geometry. Enriques was born in Livorno, and brought up in Pisa, in a Sephardi Jewish family of Portuguese descent. His younger brother was zoologist Paolo Enriques who was also the father of Enzo Enriques Agnoletti and Anna Maria Enriques Agnoletti.
Francesco Severi (13 April 1879 – 8 December 1961) was an Italian mathematician. He was the chair of the committee on Fields Medal on 1936, at the first delivery. Severi was born in Arezzo, Italy. He is famous for his contributions to algebraic geometry and the theory of functions of several complex variables. He became the effective leader of the Italian school of algebraic geometry. Together with Federigo Enriques, he won the Bordin prize from the French Academy of Sciences.
In this thesis we study algebraic cycles on Shimura varieties of orthogonal type. Such varieties are a higher dimensional generalization of modular curves and their important feature is that they have natural families of algebraic cycles in all codimesions ...
We use birational geometry to show that the existence of rational points on proper rationally connected varieties over fields of characteristic 0 is a consequence of the existence of rational points on terminal Fano varieties. We discuss several consequenc ...
This is a survey for the 2015 AMS Summer Institute on Algebraic Geometry about the Frobenius type techniques recently used extensively in positive characteristic algebraic geometry. We first explain the basic ideas through simple versions of the fundamenta ...