In materials science, asperity, defined as "unevenness of surface, roughness, ruggedness" (from the Latin asper—"rough"), has implications (for example) in physics and seismology. Smooth surfaces, even those polished to a mirror finish, are not truly smooth on a microscopic scale. They are rough, with sharp, rough or rugged projections, termed "asperities". Surface asperities exist across multiple scales, often in a self affine or fractal geometry. The fractal dimension of these structures has been correlated with the contact mechanics exhibited at an interface in terms of friction and contact stiffness.
When two macroscopically smooth surfaces come into contact, initially they only touch at a few of these asperity points. These cover only a very small portion of the surface area. Friction and wear originate at these points, and thus understanding their behavior becomes important when studying materials in contact. When the surfaces are subjected to a compressive load, the asperities deform through elastic and plastic modes, increasing the contact area between the two surfaces until the contact area is sufficient to support the load.
The relationship between frictional interactions and asperity geometry is complex and poorly understood. It has been reported that an increased roughness may under certain circumstances result in weaker frictional interactions while smoother surfaces may in fact exhibit high levels of friction owing to high levels of true contact.
The Archard equation provides a simplified model of asperity deformation when materials in contact are subject to a force. Due to the ubiquitous presence of deformable asperities in self affine hierarchical structures, the true contact area at an interface exhibits a linear relationship with the applied normal load.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Contact mechanics is the study of the deformation of solids that touch each other at one or more points. A central distinction in contact mechanics is between stresses acting perpendicular to the contacting bodies' surfaces (known as normal stress) and frictional stresses acting tangentially between the surfaces (shear stress). Normal contact mechanics or frictionless contact mechanics focuses on normal stresses caused by applied normal forces and by the adhesion present on surfaces in close contact, even if they are clean and dry.
Whenever two objects rub together, for instance wheels on a road, gears in a motor, there is both friction and wear. Different surfaces have different amounts of friction, for instance a smooth surface compared to a rough one. How much material comes off also depends upon the surfaces, and also how much pressure is used -- for instance using sandpaper to smooth out wood. One can also add liquids such as oils or water to reduce the friction, which is called lubrication.
Surface roughness can be regarded as the quality of a surface of not being smooth and it is hence linked to human (haptic) perception of the surface texture. From a mathematical perspective it is related to the spatial variability structure of surfaces, and inherently it is a multiscale property. It has different interpretations and definitions depending from the disciplines considered. Surface roughness, often shortened to roughness, is a component of surface finish (surface texture).
Atomistic simulations performed with a family of model potential with tunable hardness have proven to be a great tool for advancing the understanding of wear processes at the asperity level. They have been instrumental in finding a critical length scale, w ...
2024
, ,
Surface roughness is a key factor when it comes to friction and wear, as well as to other physical properties. These phenomena are controlled by mechanisms acting at small scales, in which the topography of apparently flat surfaces is revealed. Roughness i ...
New York2024
,
We investigate the failure mechanism of stopper knots, with a particular focus on the figure -8 knot as a representative example. Stopper knots are widely used in climbing, sailing, racket stringing, and sewing to maintain tension in ropes, strings, or thr ...