The Saturn family of American rockets was developed by a team of mostly Nazi rocket engineers and scientists led by Wernher von Braun to launch heavy payloads to Earth orbit and beyond. The Saturn family used liquid hydrogen as fuel in the upper stages. Originally proposed as a military satellite launcher, they were adopted as the launch vehicles for the Apollo Moon program. Three versions were built and flown: the medium-lift Saturn I, the heavy-lift Saturn IB, and the super heavy-lift Saturn V.
The Saturn name was proposed by von Braun in October 1958 as a logical successor to the Jupiter series as well as the Roman god's powerful position.
In 1963, President John F. Kennedy identified the Saturn I SA-5 launch as being the point where US lift capability would surpass the Soviets, after having been behind since Sputnik. He last mentioned this in a speech given at Brooks AFB in San Antonio on the day before he was assassinated.
To date, the Saturn V is the only launch vehicle to transport human beings beyond low Earth orbit. A total of 24 humans were flown to the Moon in the four years spanning December 1968 through December 1972. No Saturn rocket failed catastrophically in flight.
All the Saturn family rockets are listed here by date of introduction.
In the early 1950s, the US Navy and US Army actively developed long-range missiles with the help of German rocket engineers who were involved in developing the successful V-2 during the Second World War. These missiles included the Navy's Viking, and the Army's Corporal, Jupiter and Redstone. Meanwhile, the US Air Force developed its Atlas and Titan missiles, relying more on American engineers.
Infighting among the various branches was constant, with the United States Department of Defense (DoD) deciding which projects to fund for development. On November 26, 1956, Defense Secretary Charles E. Wilson issued a memorandum stripping the Army of offensive missiles with a range of or greater, and turning their Jupiter missiles over to the Air Force.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The objective of the course is to present with different viewpoints, the lessons learned which lead to the decisions in the space exploration and their consequences today and for the decades to come.
A launch vehicle is typically a rocket-powered vehicle designed to carry a payload (a crewed spacecraft or satellites) from Earth's surface or lower atmosphere to outer space. The most common form is the ballistic missile-shaped multistage rocket, but the term is more general and also encompasses vehicles like the Space Shuttle. Most launch vehicles operate from a launch pad, supported by a launch control center and systems such as vehicle assembly and fueling.
A multistage rocket or step rocket is a launch vehicle that uses two or more rocket stages, each of which contains its own engines and propellant. A tandem or serial stage is mounted on top of another stage; a parallel stage is attached alongside another stage. The result is effectively two or more rockets stacked on top of or attached next to each other. Two-stage rockets are quite common, but rockets with as many as five separate stages have been successfully launched.
Saturn V is a retired American super heavy-lift launch vehicle developed by NASA under the Apollo program for human exploration of the Moon. The rocket was human-rated, had three stages, and was powered with liquid fuel. It was flown from 1967 to 1973. It was used for nine crewed flights to the Moon, and to launch Skylab, the first American space station. As of 2023, the Saturn V remains the only launch vehicle to carry humans beyond low Earth orbit (LEO).
In this paper, we analyze the electric field at ground level during the first stage of triggered lightning experiments, i.e., during the rocket ascent and prior to the lightning initiation. At distances of some tens of meters from the triggering wire, the ...
Amer Geophysical Union2015
, , , , , , ,
The ITER ECRH system consists of 24 gyrotrons with up to 24 MW installed millimeter wave heating power at 170 GHz, power supplies, control system, transmission lines, one Equatorial and the four Upper Launchers. With its high frequency and small beam focus ...