A multistage rocket or step rocket is a launch vehicle that uses two or more rocket stages, each of which contains its own engines and propellant. A tandem or serial stage is mounted on top of another stage; a parallel stage is attached alongside another stage. The result is effectively two or more rockets stacked on top of or attached next to each other. Two-stage rockets are quite common, but rockets with as many as five separate stages have been successfully launched.
By jettisoning stages when they run out of propellant, the mass of the remaining rocket is decreased. Each successive stage can also be optimized for its specific operating conditions, such as decreased atmospheric pressure at higher altitudes. This staging allows the thrust of the remaining stages to more easily accelerate the rocket to its final speed and height.
In serial or tandem staging schemes, the first stage is at the bottom and is usually the largest, the second stage and subsequent upper stages are above it, usually decreasing in size. In parallel staging schemes solid or liquid rocket boosters are used to assist with launch. These are sometimes referred to as "stage 0". In the typical case, the first-stage and booster engines fire to propel the entire rocket upwards. When the boosters run out of fuel, they are detached from the rest of the rocket (usually with some kind of small explosive charge or explosive bolts) and fall away. The first stage then burns to completion and falls off. This leaves a smaller rocket, with the second stage on the bottom, which then fires. Known in rocketry circles as staging, this process is repeated until the desired final velocity is achieved. In some cases with serial staging, the upper stage ignites before the separation—the interstage ring is designed with this in mind, and the thrust is used to help positively separate the two vehicles.
A multistage rocket is required to reach orbital speed. Single-stage-to-orbit designs are sought, but have not yet been demonstrated.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The objective of the course is to present with different viewpoints, the lessons learned which lead to the decisions in the space exploration and their consequences today and for the decades to come.
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
The main objective of the course is to provide an overview of space propulsion systems. The course will also describe the basic design principles of propulsion systems.
Explore l'histoire et les principaux aspects de l'exploration spatiale, y compris les bases de lancement, les statistiques de Soyouz et les lancements de satellites.
Dans le domaine astronautique, un lanceur est une fusée capable de placer une charge utile en orbite autour de la Terre ou de l'envoyer dans l'espace interplanétaire. La charge utile peut être un satellite artificiel, placé en orbite terrestre basse ou en orbite géostationnaire, ou une sonde spatiale qui quitte l’attraction terrestre pour explorer le système solaire. Pour y parvenir un lanceur doit pouvoir imprimer à sa charge utile une vitesse horizontale d'environ et l'élever au-dessus des couches denses de l'atmosphère terrestre (environ 200 km).
vignette|Saturn V (en haut), Saturn IB (à gauche) et Saturn I (à droite) Saturn est une famille de lanceurs américains développée par la NASA dans les années 1960 pour le programme Apollo. Elle comprend le lanceur Saturn V développé pour permettre le lancement de l'expédition lunaire et capable de placer en orbite basse et les fusées Saturn I et Saturn IB qui ont permis la mise au point par étapes de la fusée géante.
An expendable launch system (or expendable launch vehicle/ELV) is a launch vehicle that can be launched only once, after which its components are either destroyed during reentry or discarded in space. ELVs typically consist of several rocket stages that are discarded sequentially as their fuel is exhausted and the vehicle gains altitude and speed. As of 2022, most satellites and human spacecraft are currently launched on ELVs. ELVs are simpler in design than reusable launch systems and therefore may have a lower production cost.
Random Fourier features (RFFs) provide a promising way for kernel learning in a spectral case. Current RFFs-based kernel learning methods usually work in a two-stage way. In the first-stage process, learn-ing an optimal feature map is often formulated as a ...
While domain adaptation has been used to improve the performance of object detectors when the training and test data follow different distributions, previous work has mostly focused on two-stage detectors. This is because their use of region proposals make ...
SPRINGER2022
, , ,
Crowding by neighboring elements leads to the deterioration of target discrimination. This phenomenon is traditionally explained with feedforward, hierarchical models. In these models, a “bottleneck” at the earliest stages of visual processing causes an ir ...