pandas is a software library written for the Python programming language for data manipulation and analysis. In particular, it offers data structures and operations for manipulating numerical tables and time series. It is free software released under the three-clause BSD license. The name is derived from the term "panel data", an econometrics term for data sets that include observations over multiple time periods for the same individuals. Its name is a play on the phrase "Python data analysis" itself. Wes McKinney started building what would become pandas at AQR Capital while he was a researcher there from 2007 to 2010.
Pandas is mainly used for data analysis and associated manipulation of tabular data in DataFrames. Pandas allows importing data from various file formats such as comma-separated values, JSON, Parquet, SQL database tables or queries, and Microsoft Excel. Pandas allows various data manipulation operations such as merging, reshaping, selecting, as well as data cleaning, and data wrangling features. The development of pandas introduced into Python many comparable features of working with DataFrames that were established in the R programming language. The pandas library is built upon another library, NumPy, which is oriented to efficiently working with arrays instead of the features of working on DataFrames.
Developer Wes McKinney started working on pandas in 2008 while at AQR Capital Management out of the need for a high performance, flexible tool to perform quantitative analysis on financial data. Before leaving AQR he was able to convince management to allow him to open source the library.
Another AQR employee, Chang She, joined the effort in 2012 as the second major contributor to the library.
In 2015, pandas signed on as a fiscally sponsored project of NumFOCUS, a 501(c)(3) nonprofit charity in the United States.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
This hands-on course teaches the tools & methods used by data scientists, from researching solutions to scaling up
prototypes to Spark clusters. It exposes the students to the entire data science pipe
Ce cours est divisé en deux partie. La première partie présente le langage Python et les différences notables entre Python et C++ (utilisé dans le cours précédent ICC). La seconde partie est une intro
scikit-learn (formerly scikits.learn and also known as sklearn) is a free software machine learning library for the Python programming language. It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific libraries NumPy and SciPy. Scikit-learn is a NumFOCUS fiscally sponsored project. The scikit-learn project started as scikits.
SciPy (pronounced 'saɪpaɪ "sigh pie") is a free and open-source Python library used for scientific computing and technical computing. SciPy contains modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and , ODE solvers and other tasks common in science and engineering. SciPy is also a family of conferences for users and developers of these tools: SciPy (in the United States), EuroSciPy (in Europe) and SciPy.in (in India).
In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data. Examples of time series are heights of ocean tides, counts of sunspots, and the daily closing value of the Dow Jones Industrial Average. A time series is very frequently plotted via a run chart (which is a temporal line chart).
Focuses on advanced pandas functions for data manipulation, exploration, and visualization with Python, emphasizing the importance of understanding and preparing data.
In a recent article, we described the edxia framework, a user-friendly framework to analyse the microstructure of cementitious materials using SEM-EDS hypermaps. The manual approach presented was shown to be efficient to answer the relevant scientific ques ...