Concept

Tropical semiring

In idempotent analysis, the tropical semiring is a semiring of extended real numbers with the operations of minimum (or maximum) and addition replacing the usual ("classical") operations of addition and multiplication, respectively. The tropical semiring has various applications (see tropical analysis), and forms the basis of tropical geometry. The name tropical is a reference to the Hungarian-born computer scientist Imre Simon, so named because he lived and worked in Brazil. The (or or ) is the semiring (, , ), with the operations: The operations and are referred to as tropical addition and tropical multiplication respectively. The unit for is , and the unit for is 0. Similarly, the (or or or ) is the semiring (, , ), with operations: The unit for is , and the unit for is 0. The two semirings are isomorphic under negation , and generally one of these is chosen and referred to simply as the tropical semiring. Conventions differ between authors and subfields: some use the min convention, some use the max convention. Tropical addition is idempotent, thus a tropical semiring is an example of an idempotent semiring. A tropical semiring is also referred to as a , though this should not be confused with an associative algebra over a tropical semiring. Tropical exponentiation is defined in the usual way as iterated tropical products. Valued field The tropical semiring operations model how valuations behave under addition and multiplication in a valued field. A real-valued field is a field equipped with a function which satisfies the following properties for all , in : if and only if with equality if Therefore the valuation v is almost a semiring homomorphism from K to the tropical semiring, except that the homomorphism property can fail when two elements with the same valuation are added together. Some common valued fields: or with the trivial valuation, for all , or its extensions with the p-adic valuation, for and coprime to , the field of formal Laurent series (integer powers), or the field of Puiseux series , or the field of Hahn series, with valuation returning the smallest exponent of appearing in the series.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.