Concept

Reflective subcategory

In mathematics, a A of a B is said to be reflective in B when the inclusion functor from A to B has a left adjoint. This adjoint is sometimes called a reflector, or localization. Dually, A is said to be coreflective in B when the inclusion functor has a right adjoint. Informally, a reflector acts as a kind of completion operation. It adds in any "missing" pieces of the structure in such a way that reflecting it again has no further effect. A full subcategory A of a category B is said to be reflective in B if for each B- B there exists an A-object and a B-morphism such that for each B-morphism to an A-object there exists a unique A-morphism with . The pair is called the A-reflection of B. The morphism is called the A-reflection arrow. (Although often, for the sake of brevity, we speak about only as being the A-reflection of B). This is equivalent to saying that the embedding functor is a right adjoint. The left adjoint functor is called the reflector. The map is the unit of this adjunction. The reflector assigns to the A-object and for a B-morphism is determined by the commuting diagram If all A-reflection arrows are (extremal) epimorphisms, then the subcategory A is said to be (extremal) epireflective. Similarly, it is bireflective if all reflection arrows are bimorphisms. All these notions are special case of the common generalization—-reflective subcategory, where is a class of morphisms. The -reflective hull of a class A of objects is defined as the smallest -reflective subcategory containing A. Thus we can speak about reflective hull, epireflective hull, extremal epireflective hull, etc. An anti-reflective subcategory is a full subcategory A such that the only objects of B that have an A-reflection arrow are those that are already in A. notions to the above-mentioned notions are coreflection, coreflection arrow, (mono)coreflective subcategory, coreflective hull, anti-coreflective subcategory. The Ab is a reflective subcategory of the , Grp. The reflector is the functor that sends each group to its abelianization.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.