Summary
A nanosheet is a two-dimensional nanostructure with thickness in a scale ranging from 1 to 100 nm. A typical example of a nanosheet is graphene, the thinnest two-dimensional material (0.34 nm) in the world. It consists of a single layer of carbon atoms with hexagonal lattices. Silicon nanosheets are being used to prototype future generations of small (5 nm) transistors. Carbon nanosheets (from hemp) may be an alternative to graphene as electrodes in supercapacitors. The most commonly used nanosheet synthesis methods use a bottom-up approach, e.g., pre-organization and polymerization at interfaces like Langmuir–Blodgett films, solution phase synthesis and chemical vapor deposition (CVD). For example, CdTe (cadmium telluride) nanosheets could be synthesized by precipitating and aging CdTe nanoparticles in deionized water. The formation of free-floating CdTe nanosheets was due to directional hydrophobic attraction and anisotropic electrostatic interactions caused by dipole moment and small positive charges. Molecular simulations through a coarse-grained model with parameters from semi-empirical quantum mechanics calculations can be used to prove the experimental process. Ultrathin single-crystal PbS (lead sulfur) sheets with micro scale in x-, y- dimensions can be obtained using a hot colloidal synthesis method. Compounds with linear chloroalkanes like 1,2-dichloroethane containing chlorine were used during the formation of PbS sheets. PbS ultrathin sheets probably resulted from the oriented attachment of the PbS nanoparticles in a two-dimensional fashion. The highly reactive facets were preferentially consumed in the growth process that led to the sheet-like PbS crystal growth. Nanosheets can also be prepared at room temperature. For instance, hexagonal PbO (lead oxide)) nanosheets were synthesized using gold nanoparticles as seeds under room temperature. The size of the PbO nanosheet can be tuned by gold NPs and Pb2+ concentration in the growth solution. No organic surfactants were employed in the synthesis process.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.