Concept

Type theory

Summary
In mathematics, logic, and computer science, a type theory is the formal presentation of a specific type system, and in general, type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a foundation of mathematics. Two influential type theories that were proposed as foundations are Alonzo Church's typed λ-calculus and Per Martin-Löf's intuitionistic type theory. Most computerized proof-writing systems use a type theory for their foundation, a common one is Thierry Coquand's Calculus of Inductive Constructions. History of type theory Type theory was created to avoid a paradox in a mathematical foundation based on naive set theory and formal logic. Russell's paradox, which was discovered by Bertrand Russell, existed because a set could be defined using "all possible sets", which included itself. Between 1902 and 1908, Bertrand Russell proposed various "theories of type" to fix the problem. By 1908 Russell arrived at a "ramified" theory of types together with an "axiom of reducibility" both of which featured prominently in Whitehead and Russell's Principia Mathematica published between 1910 and 1913. This system avoided Russell's paradox by creating a hierarchy of types and then assigning each concrete mathematical entity to a type. Entities of a given type are built exclusively of subtypes of that type, thus preventing an entity from being defined using itself. Russell's theory of types ruled out the possibility of a set being a member of itself. Types were not always used in logic. There were other techniques to avoid Russell's paradox. Types did gain a hold when used with one particular logic, Alonzo Church's lambda calculus. The most famous early example is Church's simply typed lambda calculus. Church's theory of types helped the formal system avoid the Kleene–Rosser paradox that afflicted the original untyped lambda calculus. Church demonstrated that it could serve as a foundation of mathematics and it was referred to as a higher-order logic.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.