Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns feature engineering by itself via filters (or kernel) optimization. Vanishing gradients and exploding gradients, seen during backpropagation in earlier neural networks, are prevented by using regularized weights over fewer connections. For example, for each neuron in the fully-connected layer 10,000 weights would be required for processing an image sized 100 × 100 pixels. However, applying cascaded convolution (or cross-correlation) kernels, only 25 neurons are required to process 5x5-sized tiles Higher-layer features are extracted from wider context windows, compared to lower-layer features. They have applications in: image and video recognition, recommender systems, natural language processing, brain–computer interfaces, and financial time series. CNNs are also known as Shift Invariant or Space Invariant Artificial Neural Networks (SIANN), based on the shared-weight architecture of the convolution kernels or filters that slide along input features and provide translation-equivariant responses known as feature maps. Counter-intuitively, most convolutional neural networks are not invariant to translation, due to the downsampling operation they apply to the input. Feed-forward neural networks are usually fully connected networks, that is, each neuron in one layer is connected to all neurons in the next layer. The "full connectivity" of these networks make them prone to overfitting data. Typical ways of regularization, or preventing overfitting, include: penalizing parameters during training (such as weight decay) or trimming connectivity (skipped connections, dropout, etc.) Robust datasets also increases the probability that CNNs will learn the generalized principles that characterize a given dataset rather than the biases of a poorly-populated set. Convolutional networks were inspired by biological processes in that the connectivity pattern between neurons resembles the organization of the animal visual cortex.
Volkan Cevher, Grigorios Chrysos, Fanghui Liu
Katrin Beyer, Radhakrishna Achanta, Bryan German Pantoja Rosero
Alexander Mathis, Alberto Silvio Chiappa, Alessandro Marin Vargas, Axel Bisi