IEEE 802.20 or Mobile Broadband Wireless Access (MBWA) was a specification by the standard association of the Institute of Electrical and Electronics Engineers (IEEE) for mobile broadband networks. The main standard was published in 2008. MBWA is no longer being actively developed.
This wireless broadband technology is also known and promoted as iBurst (or HC-SDMA, High Capacity Spatial Division Multiple Access). It was originally developed by ArrayComm and optimizes the use of its bandwidth with the help of smart antennas. Kyocera is the manufacturer of iBurst devices.
iBurst is a mobile broadband wireless access system that was first developed by ArrayComm, and announced with partner Sony in April 2000.
It was adopted as the High Capacity – Spatial Division Multiple Access (HC-SDMA) radio interface standard (ATIS-0700004-2005) by the Alliance for Telecommunications Industry Solutions (ATIS).
The standard was prepared by ATIS’ Wireless Technology and Systems Committee's Wireless Wideband Internet Access subcommittee and accepted as an American National Standard in 2005.
HC-SDMA was announced as considered by ISO TC204 WG16 for the continuous communications standards architecture, known as Communications, Air-interface, Long and Medium range (CALM), which ISO is developing for intelligent transport systems (ITS). ITS may include applications for public safety, network congestion management during traffic incidents, automatic toll booths, and more. An official liaison was established between WTSC and ISO TC204 WG16 for this in 2005.
The HC-SDMA interface provides wide-area broadband wireless data-connectivity for fixed, portable and mobile computing devices and appliances. The protocol is designed to be implemented with smart antenna array techniques (called MIMO for multiple-input multiple-output) to substantially improve the radio frequency (RF) coverage, capacity and performance for the system.
In January 2006, the IEEE 802.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Mobile broadband is the marketing term for wireless Internet access via mobile networks. Access to the network can be made through a portable modem, wireless modem, or a tablet/smartphone (possibly tethered) or other mobile device. The first wireless Internet access became available in 1991 as part of the second generation (2G) of mobile phone technology. Higher speeds became available in 2001 and 2006 as part of the third (3G) and fourth (4G) generations.
A wireless network is a computer network that uses wireless data connections between network nodes. Wireless networking allows homes, telecommunications networks and business installations to avoid the costly process of introducing cables into a building, or as a connection between various equipment locations. Admin telecommunications networks are generally implemented and administered using radio communication. This implementation takes place at the physical level (layer) of the OSI model network structure.
Internet access is the ability of individuals and organizations to connect to the Internet using computer terminals, computers, and other devices; and to access services such as email and the World Wide Web. Internet access is sold by Internet service providers (ISPs) delivering connectivity at a wide range of data transfer rates via various networking technologies. Many organizations, including a growing number of municipal entities, also provide cost-free wireless access and landlines.
Remote and virtual laboratories aim to overcome typical constraints of traditional laboratories and offer access to laboratory experiments without location and time restrictions. Additionally, the continuous growth of mobile devices’ ownership, as well as ...
The design of efficient IEEE 802.11 physical (PHY) rate adaptation algorithms is a challenging research topic and usually the issues surrounding their implementations on real 802.11 devices are not disclosed. In this paper, we identify and evaluate the key ...
One of the several challenges for high capacity wireless communications is to find propagation models able to predict as easily and accurately as possible the propagation channel to assess the performance of wide-band wireless systems. An investigation of ...