An epigenetic clock is a biochemical test that can be used to measure age. The test is based on DNA methylation levels, measuring the accumulation of methyl groups to one's DNA molecules.
The strong effects of age on DNA methylation levels have been known since the late 1960s. A vast literature describes sets of CpGs whose DNA methylation levels correlate with age. The first robust demonstration that DNA methylation levels in saliva could generate age predictors with an average accuracy of 5.2 years was published by a UCLA team including Sven Bocklandt, Steve Horvath, and Eric Vilain in 2011 (Bocklandt et al. 2011). The laboratories of Trey Ideker and Kang Zhang at the University of California, San Diego published the Hannum epigenetic clock (Hannum 2013), which consisted of 71 markers that accurately estimate age based on blood methylation levels. The first multi-tissue epigenetic clock, Horvath's epigenetic clock, was developed by Steve Horvath, a professor of human genetics and biostatistics at UCLA (Horvath 2013). Horvath spent over 4 years collecting publicly available Illumina DNA methylation data and identifying suitable statistical methods.
The personal story behind the discovery was featured in Nature. The age estimator was developed using 8,000 samples from 82 Illumina DNA methylation array datasets, encompassing 51 healthy tissues and cell types. The major innovation of Horvath's epigenetic clock lies in its wide applicability: the same set of 353 CpGs and the same prediction algorithm is used irrespective of the DNA source within the organism, i.e. it does not require any adjustments or offsets. This property allows one to compare the ages of different areas of the human body using the same aging clock. Shortly afterwards, a derivation of Horvath's clock, the IEAA (Intrinsic Epigenetic Age Acceleration), an estimator based on the cellular composition of the blood, was developed.
A second generation of epigenetic clocks emerged a few years later and improved on the first in age estimation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
La médecine 4P (personnalisée, préventive, prédictive et participative) bouleverse les connaissances médicales établies, les configurations institutionnelles de la médecine et les expériences vécues d
The goal of the course is to guide students through the essential aspects of molecular neuroscience and neurodegenerative diseases. The student will gain the ability to dissect the molecular basis of
The course covers in detail molecular mechanisms of cancer development with emphasis on cell cycle control, genome stability, oncogenes and tumor suppressor genes.
Aging of the brain is a process of transformation of the brain in older age, including changes all individuals experience and those of illness (including unrecognised illness). Usually this refers to humans. Since life extension is only pertinent if accompanied by health span extension, and, more importantly, by preserving brain health and cognition, finding rejuvenating approaches that act simultaneously in peripheral tissues and in brain function is a key strategy for development of rejuvenating technology.
Ageing (or aging in American English) is the process of becoming older. The term refers mainly to humans, many other animals, and fungi, whereas for example, bacteria, perennial plants and some simple animals are potentially biologically immortal. In a broader sense, ageing can refer to single cells within an organism which have ceased dividing, or to the population of a species. In humans, ageing represents the accumulation of changes in a human being over time and can encompass physical, psychological, and social changes.
Senescence (sɪˈnɛsəns) or biological aging is the gradual deterioration of functional characteristics in living organisms. The word senescence can refer to either cellular senescence or to senescence of the whole organism. Organismal senescence involves an increase in death rates and/or a decrease in fecundity with increasing age, at least in the latter part of an organism's life cycle. Senescence is the inevitable fate of almost all multicellular organisms with germ-soma separation, but it can be delayed.
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
Delves into chromatin regulation's role in memory formation, genetic and epigenetic influences on learning, and the potential of HDAC inhibitors as cognitive enhancers.
During gastrulation, Hox genes are activated in a timesequence that follows the order of the genes along their clusters. This property, which is observed in all animals that develop following a progressive rostral-to-caudal morphogenesis, is associated wit ...
Current Biology Ltd2024
Recent research shows prominent effects of pregnancy and the parenthood transition on structural brain characteristics in humans. Here, we present a comprehensive study of how parental status and number of children born/fathered links to markers of brain a ...
Background Accelerated epigenetic ageing can occur in untreated HIV infection and is partially reversible with effective antiretroviral therapy (ART). We aimed to make a long-term comparison of epigenetic ageing dynamics in people with HIV during untreated ...