In , a branch of mathematics, Grothendieck's homotopy hypothesis states that the ∞-groupoids are spaces. If we model our ∞-groupoids as Kan complexes, then the homotopy types of the geometric realizations of these sets give models for every homotopy type. It is conjectured that there are many different "equivalent" models for ∞-groupoids all which can be realized as homotopy types.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (1)
∞-groupoid
In , a branch of mathematics, an ∞-groupoid is an abstract homotopical model for topological spaces. One model uses Kan complexes which are fibrant objects in the category of simplicial sets (with the standard ). It is an generalization of a groupoid, a category in which every morphism is an isomorphism. The homotopy hypothesis states that ∞-groupoids are equivalent to spaces up to homotopy. Alexander Grothendieck suggested in Pursuing Stacks that there should be an extraordinarily simple model of ∞-groupoids using globular sets, originally called hemispherical complexes.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.