**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Category# Algebraic topology

Summary

In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent (or the stronger case of homeomorphic) have isomorphic fundamental groups. The fundamental group of a topological space is denoted by .
Start with a space (for example, a surface), and some point in it, and all the loops both starting and ending at this point—paths that start at this point, wander around and eventually return to the starting point. Two loops can be combined in an obvious way: travel along the first loop, then along the second.
Two loops are considered equivalent if one can be deformed into the other without breaking. The set of all such loops with this method of combining and this equivalence between them is the fundamental group for that particular space.
Henri Poincaré defined the fundamental group in 1895 in his paper "Analysis situs". The concept emerged in the theory of Riemann surfaces, in the work of Bernhard Riemann, Poincaré, and Felix Klein. It describes the monodromy properties of complex-valued functions, as well as providing a complete topological classification of closed surfaces.
Throughout this article, X is a topological space. A typical example is a surface such as the one depicted at the right. Moreover, is a point in X called the base-point. (As is explained below, its role is rather auxiliary.) The idea of the definition of the homotopy group is to measure how many (broadly speaking) curves on X can be deformed into each other. The precise definition depends on the notion of the homotopy of loops, which is explained first.
Given a topological space X, a loop based at is defined to be a continuous function (also known as a continuous map)
such that the starting point and the end point are both equal to .

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (72)

Related courses (11)

Related people (1)

Related publications (32)

Related startups (1)

Related lectures (197)

Homotopy category of chain complexes

In homological algebra in mathematics, the homotopy category K(A) of chain complexes in an A is a framework for working with chain homotopies and homotopy equivalences. It lies intermediate between the category of chain complexes Kom(A) of A and the D(A) of A when A is ; unlike the former it is a , and unlike the latter its formation does not require that A is abelian. Philosophically, while D(A) turns into isomorphisms any maps of complexes that are quasi-isomorphisms in Kom(A), K(A) does so only for those that are quasi-isomorphisms for a "good reason", namely actually having an inverse up to homotopy equivalence.

Real projective space

In mathematics, real projective space, denoted \mathbb{RP}^n or \mathbb{P}_n(\R), is the topological space of lines passing through the origin 0 in the real space \R^{n+1}. It is a compact, smooth manifold of dimension n, and is a special case \mathbf{Gr}(1, \R^{n+1}) of a Grassmannian space. As with all projective spaces, RPn is formed by taking the quotient of Rn+1 ∖ under the equivalence relation x ∼ λx for all real numbers λ ≠ 0. For all x in Rn+1 ∖ one can always find a λ such that λx has norm 1.

Simplicial set

In mathematics, a simplicial set is an object composed of simplices in a specific way. Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets and . Formally, a simplicial set may be defined as a contravariant functor from the to the . Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber. Every simplicial set gives rise to a "nice" topological space, known as its geometric realization.

MATH-506: Topology IV.b - cohomology rings

Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a

MATH-436: Homotopical algebra

This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous

MATH-323: Algebraic topology

Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand it

Active in diamond processing, computer-aided tools and innovative solutions. Octonus is a leading technology company creating computer-aided tools for the jewelry diamond processing industry, empowering users with innovative solutions.

Covers the bar construction method, homology groups, classifying space, and the Hopf formula.

Covers the concept of group cohomology, focusing on chain complexes, cochain complexes, cup products, and group rings.

Covers the cup product on cohomology, acyclic models, and the universal coefficient theorem.

Related categories (59)

In this thesis, we investigate the inverse problem of trees and barcodes from a combinatorial, geometric, probabilistic and statistical point of view.Computing the persistent homology of a merge tree

The field of computational topology has developed many powerful tools to describe the shape of data, offering an alternative point of view from classical statistics. This results in a variety of compl

Collapsing cell complexes was first introduced in the 1930's as a way to deform a space into a topological-equivalent subspace with a sequence of elementary moves. Recently, discrete Morse theory tech

Abstract algebra

In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of module generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers. Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operation of addition between elements of the ring or module and is compatible with the ring multiplication.

Algebraic geometry

Algebraic geometry is a branch of mathematics which classically studies zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations.

Differential geometry

Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky.