In probability and statistics, a factorial moment measure is a mathematical quantity, function or, more precisely, measure that is defined in relation to mathematical objects known as point processes, which are types of stochastic processes often used as mathematical models of physical phenomena representable as randomly positioned points in time, space or both. Moment measures generalize the idea of factorial moments, which are useful for studying non-negative integer-valued random variables.
The first factorial moment measure of a point process coincides with its first moment measure or intensity measure, which gives the expected or average number of points of the point process located in some region of space. In general, if the number of points in some region is considered as a random variable, then the moment factorial measure of this region is the factorial moment of this random variable. Factorial moment measures completely characterize a wide class of point processes, which means they can be used to uniquely identify a point process.
If a factorial moment measure is absolutely continuous, then with respect to the Lebesgue measure it is said to have a density (which is a generalized form of a derivative), and this density is known by a number of names such as factorial moment density and product density, as well as coincidence density, joint intensity
correlation function or multivariate frequency spectrum The first and second factorial moment densities of a point process are used in the definition of the pair correlation function, which gives a way to statistically quantify the strength of interaction or correlation between points of a point process.
Factorial moment measures serve as useful tools in the study of point processes as well as the related fields of stochastic geometry and spatial statistics, which are applied in various scientific and engineering disciplines such as biology, geology, physics, and telecommunications.
Point process notation
Point processes are mathematical objects that are defined on some underlying mathematical space.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In probability, statistics and related fields, a Poisson point process is a type of random mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one another. The Poisson point process is often called simply the Poisson process, but it is also called a Poisson random measure, Poisson random point field or Poisson point field.
In probability and statistics, a moment measure is a mathematical quantity, function or, more precisely, measure that is defined in relation to mathematical objects known as point processes, which are types of stochastic processes often used as mathematical models of physical phenomena representable as randomly positioned points in time, space or both. Moment measures generalize the idea of (raw) moments of random variables, hence arise often in the study of point processes and related fields.
In mathematics, stochastic geometry is the study of random spatial patterns. At the heart of the subject lies the study of random point patterns. This leads to the theory of spatial point processes, hence notions of Palm conditioning, which extend to the more abstract setting of random measures. There are various models for point processes, typically based on but going beyond the classic homogeneous Poisson point process (the basic model for complete spatial randomness) to find expressive models which allow effective statistical methods.
We study various aspects of stochastic partial differential equations driven by Lévy white noise. This driving noise, which is a generalization of Gaussian white noise, can be viewed either as a generalized random process or as an independently scattered r ...
EPFL2017
Background Glenohumeral osteoarthritis is common degenerative disease within the elderly population, which causes pain and reduced mobility. In advanced cases, total shoulder arthroplasty (TSA) is usually performed. Although TSA is an established procedure ...
We consider a class of branching processes with countably many types which we refer to as Lower Hessenberg branching processes. These are multitype Galton-Watson processes with typeset X = {0, 1, 2,...}, in which individuals of type i may give birth to off ...