A transgene is a gene that has been transferred naturally, or by any of a number of genetic engineering techniques, from one organism to another. The introduction of a transgene, in a process known as transgenesis, has the potential to change the phenotype of an organism. Transgene describes a segment of DNA containing a gene sequence that has been isolated from one organism and is introduced into a different organism. This non-native segment of DNA may either retain the ability to produce RNA or protein in the transgenic organism or alter the normal function of the transgenic organism's genetic code. In general, the DNA is incorporated into the organism's germ line. For example, in higher vertebrates this can be accomplished by injecting the foreign DNA into the nucleus of a fertilized ovum. This technique is routinely used to introduce human disease genes or other genes of interest into strains of laboratory mice to study the function or pathology involved with that particular gene.
The construction of a transgene requires the assembly of a few main parts. The transgene must contain a promoter, which is a regulatory sequence that will determine where and when the transgene is active, an exon, a protein coding sequence (usually derived from the cDNA for the protein of interest), and a stop sequence. These are typically combined in a bacterial plasmid and the coding sequences are typically chosen from transgenes with previously known functions.
Transgenic or genetically modified organisms, be they bacteria, viruses or fungi, serve many research purposes. Transgenic plants, insects, fish and mammals (including humans) have been bred. Transgenic plants such as corn and soybean have replaced wild strains in agriculture in some countries (e.g. the United States). Transgene escape has been documented for GMO crops since 2001 with persistence and invasiveness. Transgenetic organisms pose ethical questions and may cause biosafety problems.
The idea of shaping an organism to fit a specific need is not a new science.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Bioluminescence imaging and data analysis Splinkerette PCR (to analyze genomic insertion site of a transgene).The students will obtain theoretical and practical insight into embryonic stem cell biol
Golden rice is a variety of rice (Oryza sativa) produced through genetic engineering to biosynthesize beta-carotene, a precursor of vitamin A, in the edible parts of the rice. It is intended to produce a fortified food to be grown and consumed in areas with a shortage of dietary vitamin A. Vitamin A deficiency causes xerophthalmia, a range of eye conditions from night blindness to more severe clinical outcomes such as keratomalacia and corneal scars, and permanent blindness.
Molecular cloning is a set of experimental methods in molecular biology that are used to assemble recombinant DNA molecules and to direct their replication within host organisms. The use of the word cloning refers to the fact that the method involves the replication of one molecule to produce a population of cells with identical DNA molecules. Molecular cloning generally uses DNA sequences from two different organisms: the species that is the source of the DNA to be cloned, and the species that will serve as the living host for replication of the recombinant DNA.
In genetic engineering, a gene gun or biolistic particle delivery system is a device used to deliver exogenous DNA (transgenes), RNA, or protein to cells. By coating particles of a heavy metal with a gene of interest and firing these micro-projectiles into cells using mechanical force, an integration of desired genetic information can be introduced into desired cells. The technique involved with such micro-projectile delivery of DNA is often referred to as biolistics, short for "biological ballistics".
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
Gene therapy emerged as a promising treatment option for acquired and inherited diseases. The delivery of nucleic acids relies on vectors that condense and encapsulate their cargo. Especially non-viral gene delivery systems are of increasing interest. Howe ...
2022
In vertebrate embryos, the elongating body axis is patterned via the sequential and rhyth-mic production of segments from a posterior unsegmented tissue called the presomitic mesoderm (PSM). This process is controlled by a population of cellular oscillator ...
Cell labeling technologies, including the Cre/loxP system, are powerful tools in developmental biology. Although the conventional Cre/loxP system has been extensively used to label the expression of specific genes, it is less frequently used for labeling p ...