A logical matrix, binary matrix, relation matrix, Boolean matrix, or (0, 1)-matrix is a matrix with entries from the Boolean domain B = {0, 1}. Such a matrix can be used to represent a binary relation between a pair of finite sets. It is an important tool in combinatorial mathematics and theoretical computer science. If R is a binary relation between the finite indexed sets X and Y (so R ⊆ X ×Y ), then R can be represented by the logical matrix M whose row and column indices index the elements of X and Y, respectively, such that the entries of M are defined by In order to designate the row and column numbers of the matrix, the sets X and Y are indexed with positive integers: i ranges from 1 to the cardinality (size) of X, and j ranges from 1 to the cardinality of Y. See the article on indexed sets for more detail. The binary relation R on the set {1, 2, 3, 4} is defined so that aRb holds if and only if a divides b evenly, with no remainder. For example, 2R4 holds because 2 divides 4 without leaving a remainder, but 3R4 does not hold because when 3 divides 4, there is a remainder of 1. The following set is the set of pairs for which the relation R holds. {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)}. The corresponding representation as a logical matrix is which includes a diagonal of ones, since each number divides itself. A permutation matrix is a (0, 1)-matrix, all of whose columns and rows each have exactly one nonzero element. A Costas array is a special case of a permutation matrix. An incidence matrix in combinatorics and finite geometry has ones to indicate incidence between points (or vertices) and lines of a geometry, blocks of a block design, or edges of a graph. A design matrix in analysis of variance is a (0, 1)-matrix with constant row sums. A logical matrix may represent an adjacency matrix in graph theory: non-symmetric matrices correspond to directed graphs, symmetric matrices to ordinary graphs, and a 1 on the diagonal corresponds to a loop at the corresponding vertex.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.