An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field for a system of charged particles. Electric fields originate from electric charges and time-varying electric currents. Electric fields and magnetic fields are both manifestations of the electromagnetic field, one of the four fundamental interactions (also called forces) of nature.
Electric fields are important in many areas of physics, and are exploited in electrical technology. In atomic physics and chemistry, for instance, the electric field is the attractive force holding the atomic nucleus and electrons together in atoms. It is also the force responsible for chemical bonding between atoms that result in molecules.
The electric field is defined as a vector field that associates to each point in space the electrostatic (Coulomb) force per unit of charge exerted on an infinitesimal positive test charge at rest at that point. The derived SI unit for the electric field is the volt per meter (V/m), which is equal to the newton per coulomb (N/C).
The electric field is defined at each point in space as the force per unit charge that would be experienced by a vanishingly small positive test charge if held stationary at that point. As the electric field is defined in terms of force, and force is a vector (i.e. having both magnitude and direction), it follows that an electric field is a vector field. Fields that may be defined in this manner are sometimes referred to as force fields. The electric field acts between two charges similarly to the way the gravitational field acts between two masses, as they both obey an inverse-square law with distance. This is the basis for Coulomb's law, which states that, for stationary charges, the electric field varies with the source charge and varies inversely with the square of the distance from the source.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
L'objectif de ce cours est d'acquérir les connaissances de base liées aux machines électriques (conversion électromécanique). Le cours porte sur le circuit magnétique, le transformateur, les machines
Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that calculates the amount of force between two electrically charged particles at rest. This electric force is conventionally called electrostatic force or Coulomb force. Although the law was known earlier, it was first published in 1785 by French physicist Charles-Augustin de Coulomb, hence the name. Coulomb's law was essential to the development of the theory of electromagnetism and maybe even its starting point, as it allowed meaningful discussions of the amount of electric charge in a particle.
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets.
Electric charge is the physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be positive or negative (commonly carried by protons and electrons respectively, by convention). Like charges repel each other and unlike charges attract each other. An object with no net charge is referred to as electrically neutral. Early knowledge of how charged substances interact is now called classical electrodynamics, and is still accurate for problems that do not require consideration of quantum effects.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Explains the derivation of the electric field of an infinitely long line charge.
, , ,
X-rays have been observed in natural downward cloud-to-ground lightning for over 20 years and in rocket-triggered lightning for slightly less. In both cases, this energetic radiation has been detected during the stepped and dart leader phases of downward n ...
The pyroresistive response of conductive polymer composites (CPCs) has attracted much interest because of its potential applications in many electronic devices requiring a significant responsiveness to changes in external physical parameters such as temper ...
The search for new materials for energy -efficient electronic devices has gained unprecedented importance. Among the various classes of magnetic materials driving this search are antiferromagnets, magnetoelectrics, and systems with topological spin excitat ...