Ecological speciation is a form of speciation arising from reproductive isolation that occurs due to an ecological factor that reduces or eliminates gene flow between two populations of a species. Ecological factors can include changes in the environmental conditions in which a species experiences, such as behavioral changes involving predation, predator avoidance, pollinator attraction, and foraging; as well as changes in mate choice due to sexual selection or communication systems. Ecologically-driven reproductive isolation under divergent natural selection leads to the formation of new species. This has been documented in many cases in nature and has been a major focus of research on speciation for the past few decades.
Ecological speciation has been defined in various ways to identify it as distinct from nonecological forms of speciation. The evolutionary biologist Dolph Schluter defines it as "the evolution of reproductive isolation between populations or subsets of a single population by adaptation to different environments or ecological niches", while others believe natural selection is the driving force. The key difference between ecological speciation and other kinds of speciation is that it is triggered by divergent natural selection among different habitats, as opposed to other kinds of speciation processes like random genetic drift, the fixation of incompatible mutations in populations experiencing similar selective pressures, or various forms of sexual selection not involving selection on ecologically relevant traits. Ecological speciation can occur either in allopatry, sympatry, or parapatry—the only requirement being that speciation occurs as a result of adaptation to different ecological or micro-ecological conditions.
Ecological speciation can occur pre-zygotically (barriers to reproduction that occur before the formation of a zygote) or post-zygotically (barriers to reproduction that occur after the formation of a zygote). Examples of pre-zygotic isolation include habitat isolation, isolation via pollinator-pollination systems, and temporal isolation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course builds on environmental chemistry and microbiology taken in previous courses. The emphasis is on quantification using the public domain package, PHREEQC, which is an excellent computation
Character displacement is the phenomenon where differences among similar species whose distributions overlap geographically are accentuated in regions where the species co-occur, but are minimized or lost where the species' distributions do not overlap. This pattern results from evolutionary change driven by biological competition among species for a limited resource (e.g. food).
In parapatric speciation, two subpopulations of a species evolve reproductive isolation from one another while continuing to exchange genes. This mode of speciation has three distinguishing characteristics: 1) mating occurs non-randomly, 2) gene flow occurs unequally, and 3) populations exist in either continuous or discontinuous geographic ranges. This distribution pattern may be the result of unequal dispersal, incomplete geographical barriers, or divergent expressions of behavior, among other things.
Allopatric speciation () – also referred to as geographic speciation, vicariant speciation, or its earlier name the dumbbell model – is a mode of speciation that occurs when biological populations become geographically isolated from each other to an extent that prevents or interferes with gene flow. Various geographic changes can arise such as the movement of continents, and the formation of mountains, islands, bodies of water, or glaciers. Human activity such as agriculture or developments can also change the distribution of species populations.
Explores metal speciation, complexation, kinetics of ligand exchange reactions, and the relationship between thermodynamics and kinetics for metal complexes.
Discusses natural selection, species origin, reproductive compatibility, gene flow barriers, species classification, speciation modes, and polyploidy.
Background: Reproductive isolation can result from adaptive processes (e.g., ecological speciation and mutation-order speciation) or stochastic processes such as "system drift" model. Ecological speciation predicts barriers to gene flow between populations ...
Patterns in nature arise from processes interacting across a continuum of spatial scales, where new relationships emerge at each level of investigation. These patterns are nested features encompassing fine-scale local patterns, such as topography and geolo ...
Zero knowledge plays a central role in cryptography and complexity. The seminal work of Ben-Or et al. (STOC 1988) shows that zero knowledge can be achieved unconditionally for any language in NEXP, as long as one is willing to make a suitable physical assu ...