Character displacement is the phenomenon where differences among similar species whose distributions overlap geographically are accentuated in regions where the species co-occur, but are minimized or lost where the species' distributions do not overlap. This pattern results from evolutionary change driven by biological competition among species for a limited resource (e.g. food). The rationale for character displacement stems from the competitive exclusion principle, also called Gause's Law, which contends that to coexist in a stable environment two competing species must differ in their respective ecological niche; without differentiation, one species will eliminate or exclude the other through competition.
Character displacement was first explicitly explained by William L. Brown Jr. and E. O. Wilson in 1956: "Two closely related species have overlapping ranges. In the parts of the ranges where one species occurs alone, the populations of that species are similar to the other species and may even be very difficult to distinguish from it. In the area of overlap, where the two species occur together, the populations are more divergent and easily distinguished, i.e., they 'displace' one another in one or more characters. The characters involved can be morphological, ecological, behavioral, or physiological; they are assumed to be genetically based."
Brown and Wilson used the term character displacement to refer to instances of both reproductive character displacement, or reinforcement of reproductive barriers, and ecological character displacement driven by competition. As the term character displacement is commonly used, it generally refers to morphological differences due to competition. Brown and Wilson viewed character displacement as a phenomenon involved in speciation, stating, "we believe that it is a common aspect of geographical speciation, arising most often as a product of the genetic and ecological interaction of two (or more) newly evolved, cognate species [derived from the same immediate parental species] during their period of first contact.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Reinforcement is a process of speciation where natural selection increases the reproductive isolation (further divided to pre-zygotic isolation and post-zygotic isolation) between two populations of species. This occurs as a result of selection acting against the production of hybrid individuals of low fitness. The idea was originally developed by Alfred Russel Wallace and is sometimes referred to as the Wallace effect. The modern concept of reinforcement originates from Theodosius Dobzhansky.
Ecological speciation is a form of speciation arising from reproductive isolation that occurs due to an ecological factor that reduces or eliminates gene flow between two populations of a species. Ecological factors can include changes in the environmental conditions in which a species experiences, such as behavioral changes involving predation, predator avoidance, pollinator attraction, and foraging; as well as changes in mate choice due to sexual selection or communication systems.
Reinforcement is a process within speciation where natural selection increases the reproductive isolation between two populations of species by reducing the production of hybrids. Evidence for speciation by reinforcement has been gathered since the 1990s, and along with data from comparative studies and laboratory experiments, has overcome many of the objections to the theory. Differences in behavior or biology that inhibit formation of hybrid zygotes are termed prezygotic isolation.
The hypothesis that the evolution of humans involves hybridization between diverged species has been actively debated in recent years. We present the following novel evidence in support of this hypothesis: the analysis of nuclear pseudogenes of mtDNA ("NUM ...
Biomimetic behavior includes aspects such as learning from previous experience, self-diagnosis, and adaptation. This thesis describes control methodologies that are essential to development towards biomimetic behavior of a complex deployable structure. Sim ...
A von Hamos geometry based wavelength dispersive spectrometer combined with an in situ reactor cell has been developed to measure non-resonant sulfur K alpha emission for the in situ speciation of low concentrations of sulfur. The spectrometer operates at ...