In electrical engineering, a ground plane is an electrically conductive surface, usually connected to electrical ground.
The term has two different meanings in separate areas of electrical engineering.
In antenna theory, a ground plane is a conducting surface large in comparison to the wavelength, such as the Earth, which is connected to the transmitter's ground wire and serves as a reflecting surface for radio waves.
In printed circuit boards, a ground plane is a large area of copper foil on the board which is connected to the power supply ground terminal and serves as a return path for current from different components on the board.
In telecommunication, a ground plane is a flat or nearly flat horizontal conducting surface that serves as part of an antenna, to reflect the radio waves from the other antenna elements. The plane does not necessarily have to be connected to ground to be used as a reflecting surface for radio waves. Ground plane shape and size play major roles in determining its radiation characteristics including gain.
To function as a ground plane, the conducting surface must be at least a quarter of the wavelength of the radio waves in radius. In lower frequency antennas, such as the mast radiators used for broadcast antennas, the Earth itself (or a body of water such as a salt marsh or ocean) is used as a ground plane. For higher frequency antennas, in the VHF or UHF range, the ground plane can be smaller, and metal disks, screens and wires are used as ground planes. At upper VHF and UHF, the metal skin of a car or aircraft can serve as a ground plane for whip antennas projecting from it. In microstrip antennas and printed monopole antennas an area of copper foil on the opposite side of a printed circuit board serves as a ground plane. The ground plane need not be a continuous surface. In the ground plane antenna style whip antenna, the "plane" consists of several wires 1 /4 λ long radiating from the base of a quarter-wave whip antenna.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Les antennes sont utilisées dans une multitude d'applications de communications et de détection, demandant des fréquences et propriétés d'antennes très différentes. Ce cours décrit la théorie de base
Master the design of circuits and systems at high frequency (HF) and very high frequency (VHF) (1 MHz-6GHz). This lecture is particularly oriented towards circuit aspects of modern communications syst
In radio engineering, an antenna (American English) or aerial (British English) is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves (radio waves). In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified.
In radio and telecommunications a dipole antenna or doublet is the simplest and most widely used class of antenna. The dipole is any one of a class of antennas producing a radiation pattern approximating that of an elementary electric dipole with a radiating structure supporting a line current so energized that the current has only one node at each end. A dipole antenna commonly consists of two identical conductive elements such as metal wires or rods.
In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmission must be taken into account. This applies especially to radio-frequency engineering because the short wavelengths mean that wave phenomena arise over very short distances (this can be as short as millimetres depending on frequency).
Explores reducing interference through shielding, grounding, and differential measurement, emphasizing the importance of proper amplification and interference reduction techniques.
In this paper, a rigorous and independent validation of two different approaches for calculating the ground-return impedance and admittance of multiconductor underground cable systems using the transmission line theory is carried out. Furthermore, analyses ...
2023
,
This paper investigates the impact of incorporating both displacement currents and frequency-dependent soil parameters in the calculation of the ground-return impedance for the determination of the backflashover rate of 138 kV and 230 kV overhead transmiss ...
2023
This paper proposes small-argument approximations for two closed-form equations that were recently derived for the calculation of the ground-return impedance and admittance of underground cables. The proposed expressions are shown to be accurate up to 1 MH ...