The superposition theorem is a derived result of the superposition principle suited to the network analysis of electrical circuits. The superposition theorem states that for a linear system (notably including the subcategory of time-invariant linear systems) the response (voltage or current) in any branch of a bilateral linear circuit having more than one independent source equals the algebraic sum of the responses caused by each independent source acting alone, where all the other independent sources are replaced by their internal impedances. To ascertain the contribution of each individual source, all of the other sources first must be "turned off" (set to zero) by: Replacing all other independent voltage sources with a short circuit (thereby eliminating difference of potential i.e. V=0; internal impedance of ideal voltage source is zero (short circuit)). Replacing all other independent current sources with an open circuit (thereby eliminating current i.e. I=0; internal impedance of ideal current source is infinite (open circuit)). This procedure is followed for each source in turn, then the resultant responses are added to determine the true operation of the circuit. The resultant circuit operation is the superposition of the various voltage and current sources. The superposition theorem is very important in circuit analysis. It is used in converting any circuit into its Norton equivalent or Thevenin equivalent. The theorem is applicable to linear networks (time varying or time invariant) consisting of independent sources, linear dependent sources, linear passive elements (resistors, inductors, capacitors) and linear transformers. Superposition works for voltage and current but not power. In other words, the sum of the powers of each source with the other sources turned off is not the real consumed power. To calculate power we first use superposition to find both current and voltage of each linear element and then calculate the sum of the multiplied voltages and currents.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (7)
EE-202(b): Electronics I
Découvrir le monde de l'électronique depuis les lois fondamentales des composants discrets linéaires et non linéaires. Les circuits obtenus avec des assemblages de composants nécessitent de nombreuses
EE-407: Fundamentals of electrical circuits and systems II
This course provides an introduction to the theory and analysis methods of electrical circuits.
EE-105: Electrical engineering science and technology (Spring)
Ce cours propose une introduction à l'électrotechnique. Les lois fondamentales de l'électricité et différents composants d'un circuit électrique linéaire seront étudiés. L'analyse élémentaire des circ
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.