**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Norton's theorem

Summary

In direct-current circuit theory, Norton's theorem, also called the Mayer–Norton theorem, is a simplification that can be applied to networks made of linear time-invariant resistances, voltage sources, and current sources. At a pair of terminals of the network, it can be replaced by a current source and a single resistor in parallel.
For alternating current (AC) systems the theorem can be applied to reactive impedances as well as resistances.
The Norton equivalent circuit is used to represent any network of linear sources and impedances at a given frequency.
Norton's theorem and its dual, Thévenin's theorem, are widely used for circuit analysis simplification and to study circuit's initial-condition and steady-state response.
Norton's theorem was independently derived in 1926 by Siemens & Halske researcher Hans Ferdinand Mayer (1895–1980) and Bell Labs engineer Edward Lawry Norton (1898–1983).
To find the equivalent, the Norton current Ino is calculated as the current flowing at the terminals into a short circuit (zero resistance between A and B). This is Ino. The Norton resistance Rno is found by calculating the output voltage produced with no resistance connected at the terminals; equivalently, this is the resistance between the terminals with all (independent) voltage sources short-circuited and independent current sources open-circuited. This is equivalent to calculating the Thevenin resistance.
When there are dependent sources, the more general method must be used. The voltage at the terminals is calculated for an injection of a 1 amp test current at the terminals. This voltage divided by the 1 A current is the Norton impedance Rno (in ohms). This method must be used if the circuit contains dependent sources, but it can be used in all cases even when there are no dependent sources.
In the example, the total current Itotal is given by:
The current through the load is then, using the current divider rule:
And the equivalent resistance looking back into the circuit is:
So the equivalent circuit is a 3.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (41)

Related people (18)

Related courses (21)

Related MOOCs (2)

Related lectures (62)

Related units (1)

Related concepts (16)

EE-295: Electrical systems and electronics I

Le but de ce cours est d'apporter les connaissances et les expériences fondamentales pour comprendre les systèmes électriques et électroniques de base.

EE-105: Electrical engineering science and technology (Spring)

Ce cours propose une introduction à l'électrotechnique. Les lois fondamentales de l'électricité et différents composants d'un circuit électrique linéaire seront étudiés. L'analyse élémentaire des circ

EE-202(b): Electronics I

Découvrir le monde de l'électronique depuis les lois fondamentales des composants discrets linéaires et non linéaires. Les circuits obtenus avec des assemblages de composants nécessitent de nombreuses

Electrical Engineering I

Découvrez les circuits électriques linéaires. Apprenez à les maîtriser et à les résoudre, dans un premier temps en régime continu puis en régime alternatif.

Electrical Engineering I

Découvrez les circuits électriques linéaires. Apprenez à les maîtriser et à les résoudre, dans un premier temps en régime continu puis en régime alternatif.

Covers Thevenin and Norton theorems for simplifying complex circuits into equivalent ones.

Covers the Thevenin and Norton theorems for simplifying complex circuits into equivalent sources and internal resistances.

Covers the analysis of transmission line networks and wave propagation.

Thévenin's theorem

As originally stated in terms of direct-current resistive circuits only, Thévenin's theorem states that "Any linear electrical network containing only voltage sources, current sources and resistances can be replaced at terminals A–B by an equivalent combination of a voltage source Vth in a series connection with a resistance Rth." The equivalent voltage Vth is the voltage obtained at terminals A–B of the network with terminals A–B open circuited.

Network analysis (electrical circuits)

In electrical engineering and electronics, a network is a collection of interconnected components. Network analysis is the process of finding the voltages across, and the currents through, all network components. There are many techniques for calculating these values; however, for the most part, the techniques assume linear components. Except where stated, the methods described in this article are applicable only to linear network analysis.

Current source

A current source is an electronic circuit that delivers or absorbs an electric current which is independent of the voltage across it. A current source is the dual of a voltage source. The term current sink is sometimes used for sources fed from a negative voltage supply. Figure 1 shows the schematic symbol for an ideal current source driving a resistive load. There are two types. An independent current source (or sink) delivers a constant current. A dependent current source delivers a current which is proportional to some other voltage or current in the circuit.

, ,

In two-stage solid-state transformers with input-series output-parallel structure, the LLC converter operating at a fixed switching frequency is a common choice for the isolated DC/DC conversion stage because it can provide a high efficiency and a fixed vo ...

2024Modeling the interaction of ionizing radiation, either light or ions, in integrated circuits is essential for the development and optimization of optoelectronic devices and of radiation-tolerant circuits. Whereas for optical sensors photogenerated carriers ...

German Augusto Ramirez Arroyave

This contribution presents an isotropic magnetic field probe with shaped frequency response in the band 100 kHz - 400 MHz to ponder the aggregate response according to the ICNIRP 2020 guidelines. The basic sensor is a printed loop which is modelled as a Th ...