In metallurgy, recovery is a process by which a metal or alloy's deformed grains can reduce their stored energy by the removal or rearrangement of defects in their crystal structure. These defects, primarily dislocations, are introduced by plastic deformation of the material and act to increase the yield strength of a material. Since recovery reduces the dislocation density, the process is normally accompanied by a reduction in a material's strength and a simultaneous increase in the ductility. As a result, recovery may be considered beneficial or detrimental depending on the circumstances.
Recovery is related to the similar processes of recrystallization and grain growth, each of them being stages of annealing. Recovery competes with recrystallization, as both are driven by the stored energy, but is also thought to be a necessary prerequisite for the nucleation of recrystallized grains. It is so called because there is a recovery of the electrical conductivity due to a reduction in dislocations. This creates defect-free channels, giving electrons an increased mean free path.
The physical processes that fall under the designations of recovery, recrystallization and grain growth are often difficult to distinguish in a precise manner. Doherty et al. (1998) stated:
"The authors have agreed that ... recovery can be defined as all annealing processes occurring in deformed materials that occur without the migration of a high-angle grain boundary"
Thus the process can be differentiated from recrystallization and grain growth as both feature extensive movement of high-angle grain boundaries.
If recovery occurs during deformation (a situation that is common in high-temperature processing) then it is referred to as 'dynamic' while recovery that occurs after processing is termed 'static'. The principal difference is that during dynamic recovery, stored energy continues to be introduced even as it is decreased by the recovery process - resulting in a form of dynamic equilibrium.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This lecture introduces the basic concepts used to describe the atomic or molecular structure of surfaces and interfaces and the underlying thermodynamic concepts. The influence of interfaces on the p
This course covers the metallurgy, processing and properties of modern high-performance metals and alloys (e.g. advanced steels, Ni-base, Ti-base, High Entropy Alloys etc.). In addition, the principle
Explores metal plasticity mechanisms, including hardening by solid solution and precipitation, dislocation forests, and polymer behavior in relation to temperature and deformation speed.
In materials science, recrystallization is a process by which deformed grains are replaced by a new set of defect-free grains that nucleate and grow until the original grains have been entirely consumed. Recrystallization is usually accompanied by a reduction in the strength and hardness of a material and a simultaneous increase in the ductility. Thus, the process may be introduced as a deliberate step in metals processing or may be an undesirable byproduct of another processing step.
In materials science, a grain boundary is the interface between two grains, or crystallites, in a polycrystalline material. Grain boundaries are two-dimensional defects in the crystal structure, and tend to decrease the electrical and thermal conductivity of the material. Most grain boundaries are preferred sites for the onset of corrosion and for the precipitation of new phases from the solid. They are also important to many of the mechanisms of creep.
In metallurgy and materials science, annealing is a heat treatment that alters the physical and sometimes chemical properties of a material to increase its ductility and reduce its hardness, making it more workable. It involves heating a material above its recrystallization temperature, maintaining a suitable temperature for an appropriate amount of time and then cooling. In annealing, atoms migrate in the crystal lattice and the number of dislocations decreases, leading to a change in ductility and hardness.
Two severe plastic deformation (SPD) techniques of simple shear extrusion (SSE) and equal channel angular pressing (ECAP) were employed to process an extruded Mg -6Gd -3Y -1.5Ag (wt%) alloy at 553 K for 1, 2, 4 and 6 passes. The microstructural evolutions ...
Mo-Ti alloys form solid solutions over a wide range of compositions, with lattice misfit parameters increasing significantly with titanium content. This indicates a strong increase in the critical stress for edge dislocation motion. Here, we probe the tran ...
SPRINGERNATURE2023
,
Wire-arc directed energy deposition (wire-arc DED), recognized for its ability to produce large-scale parts, has gained considerable attention. However, a critical issue with this method is the high prevalence of internal porosity defects found in the manu ...