Bioremediation broadly refers to any process wherein a biological system (typically bacteria, microalgae, fungi, and plants), living or dead, is employed for removing environmental pollutants from air, water, soil, flue gasses, industrial effluents etc., in natural or artificial settings. The natural ability of organisms to adsorb, accumulate, and degrade common and emerging pollutants has attracted the use of biological resources in treatment of contaminated environment. In comparison to conventional physicochemical treatment methods bioremediation may offer considerable advantages as it aims to be sustainable, eco-friendly, cheap, and scalable.
Most bioremediation is inadvertent, involving native organisms. Research on bioremediation is heavily focused on stimulating the process by inoculation of a polluted site with organisms or supplying nutrients to promote the growth. In principle, bioremediation could be used to reduce the impact of byproducts created from anthropogenic activities, such as industrialization and agricultural processes. Bioremediation could prove less expensive and more sustainable than other remediation alternatives.
UNICEF, power producers, bulk water suppliers and local governments are early adopters of low cost bioremediation, such as aerobic bacteria tablets which are simply dropped into water.
Organic pollutants are generally more susceptible to biodegradation than heavy metals. Typical bioremediations involves oxidations. Oxidations enhance the water-solubility of organic compounds and their susceptibility to further degradation by further oxidation and hydrolysis. Ultimately biodegradation converts hydrocarbons to carbon dioxide and water. For heavy metals, bioremediation offers few solutions. Metal-containing pollutant can be removed or reduced with varying bioremediation techniques. The main challenge to bioremediations is rate: the processes are slow.
Bioremediation techniques can be classified as (i) in situ techniques, which treats polluted sites directly, vs (ii) ex situ techniques which are applied to excavated materials.