In mathematics, and, more specifically in numerical analysis and computer algebra, real-root isolation of a polynomial consist of producing disjoint intervals of the real line, which contain each one (and only one) real root of the polynomial, and, together, contain all the real roots of the polynomial.
Real-root isolation is useful because usual root-finding algorithms for computing the real roots of a polynomial may produce some real roots, but, cannot generally certify having found all real roots. In particular, if such an algorithm does not find any root, one does not know whether it is because there is no real root. Some algorithms compute all complex roots, but, as there are generally much fewer real roots than complex roots, most of their computation time is generally spent for computing non-real roots (in the average, a polynomial of degree n has n complex roots, and only log n real roots; see ). Moreover, it may be difficult to distinguish the real roots from the non-real roots with small imaginary part (see the example of Wilkinson's polynomial in next section).
The first complete real-root isolation algorithm results from Sturm's theorem (1829). However, when real-root-isolation algorithms began to be implemented on computers it appeared that algorithms derived from Sturm's theorem are less efficient than those derived from Descartes' rule of signs (1637).
Since the beginning of 20th century there is an active research activity for improving the algorithms derived from Descartes' rule of signs, getting very efficient implementations, and computing their computational complexity. The best implementations can routinely isolate real roots of polynomials of degree more than 1,000.
For finding real roots of a polynomial, the common strategy is to divide the real line (or an interval of it where root are searched) into disjoint intervals until having at most one root in each interval. Such a procedure is called root isolation, and a resulting interval that contains exactly one root is an isolating interval for this root.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
In mathematics, the bisection method is a root-finding method that applies to any continuous function for which one knows two values with opposite signs. The method consists of repeatedly bisecting the interval defined by these values and then selecting the subinterval in which the function changes sign, and therefore must contain a root. It is a very simple and robust method, but it is also relatively slow. Because of this, it is often used to obtain a rough approximation to a solution which is then used as a starting point for more rapidly converging methods.
In mathematics and computing, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f, from the real numbers to real numbers or from the complex numbers to the complex numbers, is a number x such that f(x) = 0. As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding algorithms provide approximations to zeros, expressed either as floating-point numbers or as small isolating intervals, or disks for complex roots (an interval or disk output being equivalent to an approximate output together with an error bound).
In algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers. In the important case of univariate polynomials over a field the polynomial GCD may be computed, like for the integer GCD, by the Euclidean algorithm using long division. The polynomial GCD is defined only up to the multiplication by an invertible constant.
Explores dominant balance analysis in solving the quintic polynomial, revealing insights into root behavior and the importance of symbolic expressions.
Let T be a measure-preserving Zℓ-action on the probability space (X,B,μ), let q1,…,qm:R→Rℓ be vector polynomials, and let f0,…,fm∈L∞(X). For any ϵ>0 and multicorrelation sequences of the form α(n)=∫Xf0⋅T⌊q1(n)⌋f1⋯T⌊qm(n)⌋fmdμ we show that there exis ...
2021
, ,
We study the conditions for vegetation establishment within river reaches with converging boundaries. Common to many such rivers worldwide is the existence of a limiting front (e.g., Figure 1a) beyond which all the riverbed vegetation is uprooted by floodi ...
Ink-jet printing of optical ink over SU-8 pillars is here proposed as a technology for obtaining microlenses with shape control. To demonstrate the flexibility of this method, microlenses with five different contour shapes (ranging from circular and ellipt ...