Concept

Real-root isolation

Résumé
In mathematics, and, more specifically in numerical analysis and computer algebra, real-root isolation of a polynomial consist of producing disjoint intervals of the real line, which contain each one (and only one) real root of the polynomial, and, together, contain all the real roots of the polynomial. Real-root isolation is useful because usual root-finding algorithms for computing the real roots of a polynomial may produce some real roots, but, cannot generally certify having found all real roots. In particular, if such an algorithm does not find any root, one does not know whether it is because there is no real root. Some algorithms compute all complex roots, but, as there are generally much fewer real roots than complex roots, most of their computation time is generally spent for computing non-real roots (in the average, a polynomial of degree n has n complex roots, and only log n real roots; see ). Moreover, it may be difficult to distinguish the real roots from the non-real roots with small imaginary part (see the example of Wilkinson's polynomial in next section). The first complete real-root isolation algorithm results from Sturm's theorem (1829). However, when real-root-isolation algorithms began to be implemented on computers it appeared that algorithms derived from Sturm's theorem are less efficient than those derived from Descartes' rule of signs (1637). Since the beginning of 20th century there is an active research activity for improving the algorithms derived from Descartes' rule of signs, getting very efficient implementations, and computing their computational complexity. The best implementations can routinely isolate real roots of polynomials of degree more than 1,000. For finding real roots of a polynomial, the common strategy is to divide the real line (or an interval of it where root are searched) into disjoint intervals until having at most one root in each interval. Such a procedure is called root isolation, and a resulting interval that contains exactly one root is an isolating interval for this root.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.