In statistics, a semiparametric model is a statistical model that has parametric and nonparametric components. A statistical model is a parameterized family of distributions: indexed by a parameter . A parametric model is a model in which the indexing parameter is a vector in -dimensional Euclidean space, for some nonnegative integer . Thus, is finite-dimensional, and . With a nonparametric model, the set of possible values of the parameter is a subset of some space , which is not necessarily finite-dimensional. For example, we might consider the set of all distributions with mean 0. Such spaces are vector spaces with topological structure, but may not be finite-dimensional as vector spaces. Thus, for some possibly infinite-dimensional space . With a semiparametric model, the parameter has both a finite-dimensional component and an infinite-dimensional component (often a real-valued function defined on the real line). Thus, , where is an infinite-dimensional space. It may appear at first that semiparametric models include nonparametric models, since they have an infinite-dimensional as well as a finite-dimensional component. However, a semiparametric model is considered to be "smaller" than a completely nonparametric model because we are often interested only in the finite-dimensional component of . That is, the infinite-dimensional component is regarded as a nuisance parameter. In nonparametric models, by contrast, the primary interest is in estimating the infinite-dimensional parameter. Thus the estimation task is statistically harder in nonparametric models. These models often use smoothing or kernels. A well-known example of a semiparametric model is the Cox proportional hazards model. If we are interested in studying the time to an event such as death due to cancer or failure of a light bulb, the Cox model specifies the following distribution function for : where is the covariate vector, and and are unknown parameters. . Here is finite-dimensional and is of interest; is an unknown non-negative function of time (known as the baseline hazard function) and is often a nuisance parameter.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
MATH-444: Multivariate statistics
Multivariate statistics focusses on inferring the joint distributional properties of several random variables, seen as random vectors, with a main focus on uncovering their underlying dependence struc
EE-607: Advanced Methods for Model Identification
This course introduces the principles of model identification for non-linear dynamic systems, and provides a set of possible solution methods that are thoroughly characterized in terms of modelling as
MATH-449: Biostatistics
This course covers statistical methods that are widely used in medicine and biology. A key topic is the analysis of longitudinal data: that is, methods to evaluate exposures, effects and outcomes that
Related publications (64)
Related units (1)
Related concepts (3)
Statistical model
A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of sample data (and similar data from a larger population). A statistical model represents, often in considerably idealized form, the data-generating process. When referring specifically to probabilities, the corresponding term is probabilistic model. A statistical model is usually specified as a mathematical relationship between one or more random variables and other non-random variables.
Estimator
In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. For example, the sample mean is a commonly used estimator of the population mean. There are point and interval estimators. The point estimators yield single-valued results. This is in contrast to an interval estimator, where the result would be a range of plausible values.
Statistical inference
Statistical inference is the process of using data analysis to infer properties of an underlying distribution of probability. Inferential statistical analysis infers properties of a population, for example by testing hypotheses and deriving estimates. It is assumed that the observed data set is sampled from a larger population. Inferential statistics can be contrasted with descriptive statistics. Descriptive statistics is solely concerned with properties of the observed data, and it does not rest on the assumption that the data come from a larger population.