A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of sample data (and similar data from a larger population). A statistical model represents, often in considerably idealized form, the data-generating process. When referring specifically to probabilities, the corresponding term is probabilistic model.
A statistical model is usually specified as a mathematical relationship between one or more random variables and other non-random variables. As such, a statistical model is "a formal representation of a theory" (Herman Adèr quoting Kenneth Bollen).
All statistical hypothesis tests and all statistical estimators are derived via statistical models. More generally, statistical models are part of the foundation of statistical inference.
Informally, a statistical model can be thought of as a statistical assumption (or set of statistical assumptions) with a certain property: that the assumption allows us to calculate the probability of any event. As an example, consider a pair of ordinary six-sided dice. We will study two different statistical assumptions about the dice.
The first statistical assumption is this: for each of the dice, the probability of each face (1, 2, 3, 4, 5, and 6) coming up is 1/6. From that assumption, we can calculate the probability of both dice coming up 5: 1/6 × 1/6 = 1/36. More generally, we can calculate the probability of any event: e.g. (1 and 2) or (3 and 3) or (5 and 6).
The alternative statistical assumption is this: for each of the dice, the probability of the face 5 coming up is 1/8 (because the dice are weighted). From that assumption, we can calculate the probability of both dice coming up 5: 1/8 × 1/8 = 1/64. We cannot, however, calculate the probability of any other nontrivial event, as the probabilities of the other faces are unknown.
The first statistical assumption constitutes a statistical model: because with the assumption alone, we can calculate the probability of any event.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Learn how to describe, model and control urban traffic congestion in simple ways and gain insight into advanced traffic management schemes that improve mobility in cities and highways.
Learn how to describe, model and control urban traffic congestion in simple ways and gain insight into advanced traffic management schemes that improve mobility in cities and highways.
The course will provide an overview of everyday challenges in applied statistics through case studies. Students will learn how to use core statistical methods and their extensions, and will use comput
L'objectif de ce cours est d'apprendre à réaliser de manière rigoureuse et critique des analyses par éléments finis de problèmes concrets en mécanique des solides à l'aide d'un logiciel CAE moderne.
Statistical inference is the process of using data analysis to infer properties of an underlying distribution of probability. Inferential statistical analysis infers properties of a population, for example by testing hypotheses and deriving estimates. It is assumed that the observed data set is sampled from a larger population. Inferential statistics can be contrasted with descriptive statistics. Descriptive statistics is solely concerned with properties of the observed data, and it does not rest on the assumption that the data come from a larger population.
Dependent and independent variables are variables in mathematical modeling, statistical modeling and experimental sciences. Dependent variables are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical function), on the values of other variables. Independent variables, in turn, are not seen as depending on any other variable in the scope of the experiment in question. In this sense, some common independent variables are time, space, density, mass, fluid flow rate, and previous values of some observed value of interest (e.
In statistics, linear regression is a linear approach for modelling the relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables). The case of one explanatory variable is called simple linear regression; for more than one, the process is called multiple linear regression. This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable.
Explores the consistency and asymptotic properties of the Maximum Likelihood Estimator, including challenges in proving its consistency and constructing MLE-like estimators.
The thesis explores the issue of fairness in the real-time (RT) control of battery energy storage systems (BESSs) hosted in active distribution networks (ADNs) in the presence of uncertainties by proposing and experimentally validating appropriate control ...
A key challenge across many disciplines is to extract meaningful information from data which is often obscured by noise. These datasets are typically represented as large matrices. Given the current trend of ever-increasing data volumes, with datasets grow ...
Using quantum Monte Carlo simulations and field-theory arguments, we study the fully frustrated transversefield Ising model on the square lattice for the purpose of quantitatively relating two different order parameters to each other. We consider a "primar ...