In quantum mechanics, a particle in a spherically symmetric potential is a system with a potential that depends only on the distance between the particle and a center. This is how isolated atoms are described, and plays a central role as a first approximation to the formation of chemical bonds.
In the general case, the dynamics of a particle in a spherically symmetric potential are governed by a Hamiltonian of the following form:
where is the mass of the particle, is the momentum operator, and the potential depends only on , the modulus of the radius vector. The possible quantum states of the particle can be found by using the above Hamiltonian to solve the Schrödinger equation for its eigenvalues and their corresponding eigenstates, which are wave functions.
To describe these systems, it is convenient to use spherical coordinates, , and - the time-independent Schrödinger equation for the system is then separable. This means solutions to the angular dimensions of the equation can be found independently of the radial dimension. This leaves an ordinary differential equation in terms only of the radius, , which determines the eigenstates for the particular potential, .
The eigenstates of the system have the form:
in which the spherical angles and represent the polar and azimuthal angle, respectively. The last two factors of are often grouped together as spherical harmonics, so that the eigenfunctions take the form:
The differential equation which characterizes the function is called the radial equation.
The kinetic energy operator in spherical polar coordinates is:The spherical harmonics satisfy
Substituting this into the Schrödinger equation we get a one-dimensional eigenvalue equation,This equation can be reduced to an equivalent 1-D Schrödinger equation by substituting , where satisfieswhich is precisely the one-dimensional Schrödinger equation with an effective potential given bywhere . The correction to the potential V(r) is called the centrifugal barrier term.
If , then near the origin, .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours comporte deux parties. Les bases de la thermodynamique des équilibres et de la cinétique des réactions sont introduites dans l'une d'elles. Les premières notions de chimie quantique sur les é
Covers the fundamentals of quantum mechanics, focusing on state systems and observable measurements.
Explores turning points, quantization, and tunneling in quantum mechanics.
Focuses on finding an eigenstate of energy E0 in a non-infinite well potential by considering the Schrodinger equation.
In quantum mechanics, the particle in a box model (also known as the infinite potential well or the infinite square well) describes a particle free to move in a small space surrounded by impenetrable barriers. The model is mainly used as a hypothetical example to illustrate the differences between classical and quantum systems. In classical systems, for example, a particle trapped inside a large box can move at any speed within the box and it is no more likely to be found at one position than another.
Hydrogen clathrate hydrates are ice-like crystalline substances in which hydrogen molecules are trapped inside polyhedral cages formed by the water molecules. Small cages can host only a single H-2 molecule, while each large cage can be occupied by up to f ...
We prove that in any unitary CFT, a twist gap in the spectrum of operator product expansion (OPE) of identical scalar quasiprimary operators (i.e. phi x phi) implies the existence of a family of quasiprimary operators O t,l with spins l ->.infinity and twi ...
Years of a fierce competition have naturally selected the fittest deep learning algorithms. Yet, although these models work well in practice, we still lack a proper characterization of why they do so. This poses serious questions about the robustness, trus ...