Uranus is the seventh planet from the Sun and is a gaseous cyan ice giant. Most of the planet is made out of water, ammonia, and methane in a supercritical phase of matter, which in astronomy is called 'ice' or volatiles. The planet's atmosphere has a complex layered cloud structure and has the lowest minimum temperature of out of all Solar System's planets. It has a marked axial tilt of 97.8° with a retrograde rotation rate of 17 hours. This means that in an 84 Earth years orbital period around the Sun, its poles get around 42 years of continuous sunlight, followed by 42 years of continuous darkness.
Uranus has the third-largest diameter and fourth-largest mass among the Solar System's planets. Based on current models, inside its volatile mantle layer is a rocky core, and surrounding it is a thick hydrogen and helium atmosphere. Trace amount of hydrocarbons (thought to be produced via hydrolysis) and carbon monoxide along with carbon dioxide (thought to have been originated from comets) have been detected in the upper atmosphere. There are many unexplained climate phenomena in Uranus's atmosphere, such as its peak wind speed of , variations in its polar cap and its erratic cloud formation. The planet also has a very low internal heat compared to other giant planets, which is still unexplained.
Like the other giant planets, Uranus has a ring system, orbiting natural satellites and a magnetosphere. Its ring system is extremely dark, with only about 2% of the incoming light reflected, and contains the known 13 inner moons. Further out are the larger five major moons of the planet: Miranda, Ariel, Umbriel, Titania, and Oberon; and orbiting at much greater distance from Uranus are the known nine irregular moons. The planet's magnetosphere is highly asymmetric and has many charged particles, which may cause the darkening of its rings and moons.
Uranus is visible to the naked eye, but it is very dim and was not classified as a planet until 1781, when it was first observed by William Herschel.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Neptune is the eighth planet from the Sun and the farthest IAU-recognized planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times the mass of Earth, and slightly more massive than its near-twin Uranus. Neptune is denser and physically smaller than Uranus because its greater mass causes more gravitational compression of its atmosphere. Being composed primarily of gases and liquids, it has no well-defined solid surface.
Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius of about nine and a half times that of Earth. It has only one-eighth the average density of Earth, but is over 95 times more massive. Saturn's interior is thought to be composed of a rocky core, surrounded by a deep layer of metallic hydrogen, an intermediate layer of liquid hydrogen and liquid helium, and finally, a gaseous outer layer.
Miranda, also designated Uranus V, is the smallest and innermost of Uranus's five round satellites. It was discovered by Gerard Kuiper on 16 February 1948 at McDonald Observatory in Texas, and named after Miranda from William Shakespeare's play The Tempest. Like the other large moons of Uranus, Miranda orbits close to its planet's equatorial plane. Because Uranus orbits the Sun on its side, Miranda's orbit is perpendicular to the ecliptic and shares Uranus' extreme seasonal cycle.
The course presents the detection of ionizing radiation in the keV and MeV energy ranges. Physical processes of radiation/matter interaction are introduced. All steps of detection are covered, as well
In this course we study heat transfer (and energy conversion) from a microscopic perspective. First we focus on understanding why classical laws (i.e. Fourier Law) are what they are and what are their
Introduction to time-variable astrophysical objects and processes, from Space Weather to stars, black holes, and galaxies. Introduction to time-series analysis, instrumentation targeting variability,
Extreme emission line galaxies (EELGs), where nebular emissions contribute 30%-40% of the flux in certain photometric bands, are ubiquitous in the early Universe (z > 6). We utilize deep NIRCam imaging from the JWST Advanced Deep Extragalactic Survey (JADE ...
We compute synthetic, rest-frame optical and ultraviolet (UV) emission-line properties of galaxy populations at redshifts from z approximate to 0 to =8 in a full cosmological framework. We achieve this by coupling, in post-processing, the cosmological Illu ...
We present a sample of 88 candidate z similar to 8.5-14.5 galaxies selected from the completed NIRCam imaging from the Cosmic Evolution Early Release Science survey. These data cover similar to 90 arcmin2 (10 NIRCam pointings) in six broadband imaging filt ...