An adduct (from the Latin adductus, "drawn toward" alternatively, a contraction of "addition product") is a product of a direct addition of two or more distinct molecules, resulting in a single reaction product containing all atoms of all components. The resultant is considered a distinct molecular species. Examples include the addition of sodium bisulfite to an aldehyde to give a sulfonate. It can be considered as a single product resulting from the direct combination of different molecules which comprises all atoms of the reactant molecules.
Adducts often form between Lewis acids and Lewis bases. A good example is the formation of adducts between the Lewis acid borane and the oxygen atom in the Lewis bases, tetrahydrofuran (THF): BH3·O(CH2)4 or diethyl ether: BH3·O(CH3CH2)2. Many Lewis acids and Lewis bases reacting in the gas phase or in non-aqueous solvents to form adducts have been examined in the ECW model. Trimethylboron, trimethyltin chloride and bis(hexafluoroacetylacetonato)copper(II) are examples of Lewis acids that form adducts which exhibit steric effects. For example: trimethyltin chloride, when reacting with diethyl ether, exhibits steric repulsion between the methyl groups on the tin and the ethyl groups on oxygen. But when the Lewis base is tetrahydrofuran, steric repulsion is reduced. The ECW model can provide a measure of these steric effects.
Compounds or mixtures that cannot form an adduct because of steric hindrance are called frustrated Lewis pairs.
Adducts are not necessarily molecular in nature. A good example from solid-state chemistry is the adducts of ethylene or carbon monoxide of CuAlCl4. The latter is a solid with an extended lattice structure. Upon formation of the adduct, a new extended phase is formed in which the gas molecules are incorporated (inserted) as ligands of the copper atoms within the structure. This reaction can also be considered a reaction between a base and a Lewis acid with the copper atom in the electron-receiving role and the pi electrons of the gas molecule in the electron-donating role.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A Lewis acid (named for the American physical chemist Gilbert N. Lewis) is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct. A Lewis base, then, is any species that has a filled orbital containing an electron pair which is not involved in bonding but may form a dative bond with a Lewis acid to form a Lewis adduct. For example, NH3 is a Lewis base, because it can donate its lone pair of electrons.
In chemistry, there are three definitions in common use of the word "base": Arrhenius bases, Brønsted bases, and Lewis bases. All definitions agree that bases are substances that react with acids, as originally proposed by G.-F. Rouelle in the mid-18th century. In 1884, Svante Arrhenius proposed that a base is a substance which dissociates in aqueous solution to form hydroxide ions OH−. These ions can react with hydrogen ions (H+ according to Arrhenius) from the dissociation of acids to form water in an acid–base reaction.
Explores Persistent Organic Pollutants (POPs) sources, bioaccumulation potential, and toxicity, focusing on PAHs and pesticides impact on the environment and human health.
Tetrel Lewis acids are a prospective alternative to commonly employed neutral boranes in frustrated Lewis pair (FLP) chemistry. While cationic tetrylium Lewis acids, being isolobal and iso(valence)electronic, are a natural replacement to boranes, neutral t ...
AMER CHEMICAL SOC2021
, , , , , , ,
Incorporating extended pi-conjugated organic cations in layered lead halide perovskites is a recent trend promising to merge the fields of organic semiconductors and lead halide perovskites. Herein, we integrate benzodithiophene (BDT) into Ruddlesden–Poppe ...
Frustrated Lewis pairs (FLP) which rely on the cooperative action of Lewis acids and Lewis bases, played a prominent role in the advancement of main-group catalysis. While the early days of FLP chemistry witnessed the dominance of boranes, there is a growi ...